Hyperspectral Image Generation with Unmixing Guided Diffusion Model
- URL: http://arxiv.org/abs/2506.02601v1
- Date: Tue, 03 Jun 2025 08:27:10 GMT
- Title: Hyperspectral Image Generation with Unmixing Guided Diffusion Model
- Authors: Shiyu Shen, Bin Pan, Ziye Zhang, Zhenwei Shi,
- Abstract summary: Diffusion models are popular for their ability to generate high-quality samples.<n>We propose a novel diffusion model guided by hyperspectral unmixing.<n>Our model is capable of generating high-quality and diverse hyperspectral images.
- Score: 21.078386095749398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, hyperspectral image generation has received increasing attention, but existing generative models rely on conditional generation schemes, which limits the diversity of generated images. Diffusion models are popular for their ability to generate high-quality samples, but adapting these models from RGB to hyperspectral data presents the challenge of high dimensionality and physical constraints. To address these challenges, we propose a novel diffusion model guided by hyperspectral unmixing. Our model comprises two key modules: an unmixing autoencoder module and an abundance diffusion module. The unmixing autoencoder module leverages unmixing guidance to shift the generative task from the image space to the low-dimensional abundance space, significantly reducing computational complexity while preserving high fidelity. The abundance diffusion module generates samples that satisfy the constraints of non-negativity and unity, ensuring the physical consistency of the reconstructed HSIs. Additionally, we introduce two evaluation metrics tailored to hyperspectral data. Empirical results, evaluated using both traditional metrics and our proposed metrics, indicate that our model is capable of generating high-quality and diverse hyperspectral images, offering an advancement in hyperspectral data generation.
Related papers
- D2C: Unlocking the Potential of Continuous Autoregressive Image Generation with Discrete Tokens [80.75893450536577]
We propose D2C, a novel two-stage method to enhance model generation capacity.<n>In the first stage, the discrete-valued tokens representing coarse-grained image features are sampled by employing a small discrete-valued generator.<n>In the second stage, the continuous-valued tokens representing fine-grained image features are learned conditioned on the discrete token sequence.
arXiv Detail & Related papers (2025-03-21T13:58:49Z) - Language-Informed Hyperspectral Image Synthesis for Imbalanced-Small Sample Classification via Semi-Supervised Conditional Diffusion Model [1.9746060146273674]
This paper proposes Txt2HSI-LDM(VAE), a novel language-informed hyperspectral image synthesis method.<n>To address the high-dimensionality of hyperspectral data, a universal variational autoencoder (VAE) is designed to map the data into a low-dimensional latent space.<n>VAE decodes HSI from latent space generated by the diffusion model with the language conditions as input.
arXiv Detail & Related papers (2025-02-27T02:35:49Z) - Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective [52.778766190479374]
Latent-based image generative models have achieved notable success in image generation tasks.
Despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation.
We propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling.
arXiv Detail & Related papers (2024-10-16T12:13:17Z) - Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.57727062920458]
We present Meissonic, which elevates non-autoregressive masked image modeling (MIM) text-to-image to a level comparable with state-of-the-art diffusion models like SDXL.<n>We leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers.<n>Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images.
arXiv Detail & Related papers (2024-10-10T17:59:17Z) - Enhancing Hyperspectral Images via Diffusion Model and Group-Autoencoder
Super-resolution Network [29.6360974619655]
Group-Autoencoder (GAE) framework encodes high-dimensional hyperspectral data into low-dimensional latent space.
DMGASR construct highly effective HSI SR model (DMGASR)
Experimental results on both natural and remote sensing hyperspectral datasets demonstrate that the proposed method is superior to other state-of-the-art methods both visually and metrically.
arXiv Detail & Related papers (2024-02-27T07:57:28Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - DDRF: Denoising Diffusion Model for Remote Sensing Image Fusion [7.06521373423708]
Denosing diffusion model, as a generative model, has received a lot of attention in the field of image generation.
We introduce diffusion model to the image fusion field, treating the image fusion task as image-to-image translation.
Our method can inspire other works and gain insight into this field to better apply the diffusion model to image fusion tasks.
arXiv Detail & Related papers (2023-04-10T12:28:27Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
This paper presents a versatile framework for conditional image generation.
It incorporates the inductive bias of CNNs and powerful sequence modeling of auto-regression.
Our method achieves superior diverse image generation performance as compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-21T22:19:17Z) - Global Context with Discrete Diffusion in Vector Quantised Modelling for
Image Generation [19.156223720614186]
The integration of Vector Quantised Variational AutoEncoder with autoregressive models as generation part has yielded high-quality results on image generation.
We show that with the help of a content-rich discrete visual codebook from VQ-VAE, the discrete diffusion model can also generate high fidelity images with global context.
arXiv Detail & Related papers (2021-12-03T09:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.