ControlMambaIR: Conditional Controls with State-Space Model for Image Restoration
- URL: http://arxiv.org/abs/2506.02633v1
- Date: Tue, 03 Jun 2025 08:50:00 GMT
- Title: ControlMambaIR: Conditional Controls with State-Space Model for Image Restoration
- Authors: Cheng Yang, Lijing Liang, Zhixun Su,
- Abstract summary: This paper proposes ControlMambaIR, a novel image restoration method designed to address perceptual challenges in image deraining, deblurring, and denoising tasks.<n>By integrating the Mamba network architecture with the diffusion model, the condition network achieves refined conditional control, thereby enhancing the control and optimization of the image generation process.
- Score: 13.577709018178364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes ControlMambaIR, a novel image restoration method designed to address perceptual challenges in image deraining, deblurring, and denoising tasks. By integrating the Mamba network architecture with the diffusion model, the condition network achieves refined conditional control, thereby enhancing the control and optimization of the image generation process. To evaluate the robustness and generalization capability of our method across various image degradation conditions, extensive experiments were conducted on several benchmark datasets, including Rain100H, Rain100L, GoPro, and SSID. The results demonstrate that our proposed approach consistently surpasses existing methods in perceptual quality metrics, such as LPIPS and FID, while maintaining comparable performance in image distortion metrics, including PSNR and SSIM, highlighting its effectiveness and adaptability. Notably, ablation experiments reveal that directly noise prediction in the diffusion process achieves better performance, effectively balancing noise suppression and detail preservation. Furthermore, the findings indicate that the Mamba architecture is particularly well-suited as a conditional control network for diffusion models, outperforming both CNN- and Attention-based approaches in this context. Overall, these results highlight the flexibility and effectiveness of ControlMambaIR in addressing a range of image restoration perceptual challenges.
Related papers
- One-Step Diffusion-based Real-World Image Super-Resolution with Visual Perception Distillation [53.24542646616045]
We propose VPD-SR, a novel visual perception diffusion distillation framework specifically designed for image super-resolution (SR) generation.<n>VPD-SR consists of two components: Explicit Semantic-aware Supervision (ESS) and High-frequency Perception (HFP) loss.<n>The proposed VPD-SR achieves superior performance compared to both previous state-of-the-art methods and the teacher model with just one-step sampling.
arXiv Detail & Related papers (2025-06-03T08:28:13Z) - Enhanced Confocal Laser Scanning Microscopy with Adaptive Physics Informed Deep Autoencoders [0.0]
We present a physics-informed deep learning framework to address limitations in Confocal Laser Scanning Microscopy.<n>The model reconstructs high fidelity images from heavily noisy inputs by using convolutional and transposed convolutional layers.
arXiv Detail & Related papers (2025-01-24T18:32:34Z) - WTCL-Dehaze: Rethinking Real-world Image Dehazing via Wavelet Transform and Contrastive Learning [17.129068060454255]
Single image dehazing is essential for applications such as autonomous driving and surveillance.
We propose an enhanced semi-supervised dehazing network that integrates Contrastive Loss and Discrete Wavelet Transform.
Our proposed algorithm achieves superior performance and improved robustness compared to state-of-the-art single image dehazing methods.
arXiv Detail & Related papers (2024-10-07T05:36:11Z) - Accelerating Diffusion for SAR-to-Optical Image Translation via Adversarial Consistency Distillation [5.234109158596138]
We propose a new training framework for SAR-to-optical image translation.
Our method employs consistency distillation to reduce iterative inference steps and integrates adversarial learning to ensure image clarity and minimize color shifts.
The results demonstrate that our approach significantly improves inference speed by 131 times while maintaining the visual quality of the generated images.
arXiv Detail & Related papers (2024-07-08T16:36:12Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.