Truly Assessing Fluid Intelligence of Large Language Models through Dynamic Reasoning Evaluation
- URL: http://arxiv.org/abs/2506.02648v1
- Date: Tue, 03 Jun 2025 09:01:08 GMT
- Title: Truly Assessing Fluid Intelligence of Large Language Models through Dynamic Reasoning Evaluation
- Authors: Yue Yang, MingKang Chen, Qihua Liu, Mengkang Hu, Qiguang Chen, Gengrui Zhang, Shuyue Hu, Guangtao Zhai, Yu Qiao, Yu Wang, Wenqi Shao, Ping Luo,
- Abstract summary: Large language models (LLMs) have demonstrated impressive reasoning capacities that mirror human-like thinking.<n>Existing reasoning benchmarks either focus on domain-specific knowledge (crystallized intelligence) or lack interpretability.<n>We propose DRE-Bench, a dynamic reasoning evaluation benchmark grounded in a hierarchical cognitive framework.
- Score: 75.26829371493189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in large language models (LLMs) have demonstrated impressive reasoning capacities that mirror human-like thinking. However, whether LLMs possess genuine fluid intelligence (i.e., the ability to reason abstractly and generalize rules in novel situations) remains an open question. Existing reasoning benchmarks either focus on domain-specific knowledge (crystallized intelligence) or lack interpretability. To address these limitations, we propose DRE-Bench, a dynamic reasoning evaluation benchmark grounded in a hierarchical cognitive framework. DRE-Bench consists of 36 abstract reasoning tasks organized across four cognitive levels, with each task featuring multiple dynamic variants that test the same underlying latent rule. This design enables fine-grained, interpretable, and reliable assessments of fluid intelligence. We evaluate a range of state-of-the-art LLMs, including both general LLMs (GPT-4o, Claude 3.7) and reasoning LLMs (o1, DeepSeek-R1, QwQ, Skywork-OR1). Experimental results reveal that although most LLMs achieve competent and robust performance in low-level cognition, they struggle with high-level cognition and exhibit limited generalization as task complexity grows. Our findings highlight the gap between current LLMs and true human-like fluid intelligence and offer a new path for systematically tracking reasoning progress in LLMs.
Related papers
- Benchmarking Spatiotemporal Reasoning in LLMs and Reasoning Models: Capabilities and Challenges [4.668749313973097]
This paper systematically evaluate Large Language Models (LLMs) and Large Reasoning Models (LRMs) across three levels of reasoning complexity.<n>We curate 26 challenges where models answer directly or by Python Code Interpreter.<n>LRMs show robust performance across tasks with various levels of difficulty, often competing or surpassing traditional first-principle-based methods.
arXiv Detail & Related papers (2025-05-16T18:32:35Z) - Generative Evaluation of Complex Reasoning in Large Language Models [39.195491367590485]
We introduce KUMO, a generative evaluation framework designed specifically for assessing reasoning in large language models (LLMs)<n>Through an automated pipeline, KUMO continuously generates novel tasks across open-ended domains, compelling models to demonstrate genuine generalization rather than superhuman memorization.<n>We evaluate 23 state-of-the-art LLMs on 5,000 tasks across 100 domains created by KUMO, benchmarking their reasoning abilities against university students.
arXiv Detail & Related papers (2025-04-03T17:54:18Z) - Understanding LLMs' Fluid Intelligence Deficiency: An Analysis of the ARC Task [71.61879949813998]
In cognitive research, the latter ability is referred to as fluid intelligence, which is considered to be critical for assessing human intelligence.<n>Recent research on fluid intelligence assessments has highlighted significant deficiencies in LLMs' abilities.<n>Our study revealed three major limitations in existing LLMs: limited ability for skill composition, unfamiliarity with abstract input formats, and the intrinsic deficiency of left-to-right decoding.
arXiv Detail & Related papers (2025-02-11T02:31:09Z) - CLR-Fact: Evaluating the Complex Logical Reasoning Capability of Large Language Models over Factual Knowledge [44.59258397967782]
Large language models (LLMs) have demonstrated impressive capabilities across various natural language processing tasks.
We present a systematic evaluation of state-of-the-art LLMs' complex logical reasoning abilities.
We find that LLMs excel at reasoning over general world knowledge but face significant challenges with specialized domain-specific knowledge.
arXiv Detail & Related papers (2024-07-30T05:40:32Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
Large language models (LLMs) have revolutionized many areas by achieving state-of-the-art performance on downstream tasks.
Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems.
arXiv Detail & Related papers (2024-01-17T08:22:52Z) - Improving Large Language Models in Event Relation Logical Prediction [33.88499005859982]
Event relation extraction is a challenging task that demands thorough semantic understanding and rigorous logical reasoning.
In this paper, we conduct an in-depth investigation to systematically explore the capability of LLMs in understanding and applying event relation logic.
Our study reveals that LLMs are not logically consistent reasoners, which results in their suboptimal performance on tasks that need rigorous reasoning.
arXiv Detail & Related papers (2023-10-13T14:53:06Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Metacognitive Prompting Improves Understanding in Large Language Models [12.112914393948415]
We introduce Metacognitive Prompting (MP), a strategy inspired by human introspective reasoning processes.
We conduct experiments on four prevalent Large Language Models (LLMs) across ten natural language understanding (NLU) datasets.
MP consistently outperforms existing prompting methods in both general and domain-specific NLU tasks.
arXiv Detail & Related papers (2023-08-10T05:10:17Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
We propose four characteristics of generally intelligent agents.
We argue that active engagement with objects in the real world delivers more robust signals for forming conceptual representations.
We conclude by outlining promising future research directions in the field of artificial general intelligence.
arXiv Detail & Related papers (2023-07-07T13:58:16Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
In this paper, we make the first attempt to investigate the feasibility of incorporating logical knowledge through self-supervised post-training.
We devise an auto-regressive objective variant of MERIt and integrate it with two LLM series, i.e., FLAN-T5 and LLaMA, with parameter size ranging from 3 billion to 13 billion.
The results on two challenging logical reasoning benchmarks demonstrate the effectiveness of LogicLLM.
arXiv Detail & Related papers (2023-05-23T06:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.