Metacognitive Prompting Improves Understanding in Large Language Models
- URL: http://arxiv.org/abs/2308.05342v4
- Date: Wed, 20 Mar 2024 20:37:17 GMT
- Title: Metacognitive Prompting Improves Understanding in Large Language Models
- Authors: Yuqing Wang, Yun Zhao,
- Abstract summary: We introduce Metacognitive Prompting (MP), a strategy inspired by human introspective reasoning processes.
We conduct experiments on four prevalent Large Language Models (LLMs) across ten natural language understanding (NLU) datasets.
MP consistently outperforms existing prompting methods in both general and domain-specific NLU tasks.
- Score: 12.112914393948415
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In Large Language Models (LLMs), there have been consistent advancements in task-specific performance, largely influenced by effective prompt design. Recent advancements in prompting have enhanced reasoning in logic-intensive tasks for LLMs, yet the nuanced understanding abilities of these models, crucial for processing and interpreting complex information, remain underexplored. In this study, we introduce Metacognitive Prompting (MP), a strategy inspired by human introspective reasoning processes. Using MP, LLMs undergo a systematic series of structured, self-aware evaluations, drawing on both their vast inherent knowledge and new insights. We conduct extensive experiments on four prevalent LLMs: Llama2, PaLM2, GPT-3.5, and GPT-4, across ten natural language understanding (NLU) datasets from GLUE, SuperGLUE, BLUE, and LexGLUE benchmarks. Additionally, we compare our method with chain-of-thought prompting and its advanced versions. The results show that GPT-4 consistently excels across all tasks, while other models have shown significant progress in some tasks when used in conjunction with MP. Furthermore, MP consistently outperforms existing prompting methods in both general and domain-specific NLU tasks. This study underscores the potential to amplify the understanding abilities of LLMs and highlights the benefits of mirroring human introspective reasoning in NLU tasks.
Related papers
- Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
Large language models (LLMs) have made remarkable progress in a wide range of natural language understanding and generation tasks.
We present a comprehensive evaluation framework on various types of NLU tasks, which covers all key factors in determining LLMs' capability of generating counterfactuals.
arXiv Detail & Related papers (2023-05-24T06:44:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.