Asymptotics of SGD in Sequence-Single Index Models and Single-Layer Attention Networks
- URL: http://arxiv.org/abs/2506.02651v1
- Date: Tue, 03 Jun 2025 09:03:27 GMT
- Title: Asymptotics of SGD in Sequence-Single Index Models and Single-Layer Attention Networks
- Authors: Luca Arnaboldi, Bruno Loureiro, Ludovic Stephan, Florent Krzakala, Lenka Zdeborova,
- Abstract summary: We study the dynamics of gradient descent (SGD) for a class of sequence models termed Sequence Single-Index (SSI) models.<n>This setting generalizes classical single-index models to the sequential domain.
- Score: 24.882327415229295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the dynamics of stochastic gradient descent (SGD) for a class of sequence models termed Sequence Single-Index (SSI) models, where the target depends on a single direction in input space applied to a sequence of tokens. This setting generalizes classical single-index models to the sequential domain, encompassing simplified one-layer attention architectures. We derive a closed-form expression for the population loss in terms of a pair of sufficient statistics capturing semantic and positional alignment, and characterize the induced high-dimensional SGD dynamics for these coordinates. Our analysis reveals two distinct training phases: escape from uninformative initialization and alignment with the target subspace, and demonstrates how the sequence length and positional encoding influence convergence speed and learning trajectories. These results provide a rigorous and interpretable foundation for understanding how sequential structure in data can be beneficial for learning with attention-based models.
Related papers
- Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning [56.22841701016295]
Supervised Causal Learning (SCL) is an emerging paradigm in this field.<n>Existing Deep Neural Network (DNN)-based methods commonly adopt the "Node-Edge approach"
arXiv Detail & Related papers (2025-02-15T19:10:35Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
In the anisotropic setting, the commonly used spherical gradient dynamics may fail to recover the true direction.
We show that appropriate weight normalization that is reminiscent of batch normalization can alleviate this issue.
In particular, under the spiked model with a suitably large spike, the sample complexity of gradient-based training can be made independent of the information exponent.
arXiv Detail & Related papers (2023-09-07T16:55:50Z) - Seq-HyGAN: Sequence Classification via Hypergraph Attention Network [0.0]
Sequence classification has a wide range of real-world applications in different domains, such as genome classification in health and anomaly detection in business.
The lack of explicit features in sequence data makes it difficult for machine learning models.
We propose a novel Hypergraph Attention Network model, namely Seq-HyGAN.
arXiv Detail & Related papers (2023-03-04T11:53:33Z) - An Adaptive and Stability-Promoting Layerwise Training Approach for Sparse Deep Neural Network Architecture [0.0]
This work presents a two-stage adaptive framework for developing deep neural network (DNN) architectures that generalize well for a given training data set.
In the first stage, a layerwise training approach is adopted where a new layer is added each time and trained independently by freezing parameters in the previous layers.
We introduce a epsilon-delta stability-promoting concept as a desirable property for a learning algorithm and show that employing manifold regularization yields a epsilon-delta stability-promoting algorithm.
arXiv Detail & Related papers (2022-11-13T09:51:16Z) - Learning Single-Index Models with Shallow Neural Networks [43.6480804626033]
We introduce a natural class of shallow neural networks and study its ability to learn single-index models via gradient flow.
We show that the corresponding optimization landscape is benign, which in turn leads to generalization guarantees that match the near-optimal sample complexity of dedicated semi-parametric methods.
arXiv Detail & Related papers (2022-10-27T17:52:58Z) - Linearization and Identification of Multiple-Attractors Dynamical System
through Laplacian Eigenmaps [8.161497377142584]
We propose a Graph-based spectral clustering method that takes advantage of a velocity-augmented kernel to connect data-points belonging to the same dynamics.
We prove that there always exist a set of 2-dimensional embedding spaces in which the sub-dynamics are linear, and n-dimensional embedding where they are quasi-linear.
We learn a diffeomorphism from the Laplacian embedding space to the original space and show that the Laplacian embedding leads to good reconstruction accuracy and a faster training time.
arXiv Detail & Related papers (2022-02-18T12:43:25Z) - Structured Reordering for Modeling Latent Alignments in Sequence
Transduction [86.94309120789396]
We present an efficient dynamic programming algorithm performing exact marginal inference of separable permutations.
The resulting seq2seq model exhibits better systematic generalization than standard models on synthetic problems and NLP tasks.
arXiv Detail & Related papers (2021-06-06T21:53:54Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - A Short Note on Analyzing Sequence Complexity in Trajectory Prediction
Benchmarks [8.870188183999852]
An approach for determining a dataset representation in terms of a small set of distinguishable sub-sequences is proposed.
A first proof of concept on synthetically generated and real-world datasets shows the viability of the approach.
arXiv Detail & Related papers (2020-03-27T11:44:11Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.