Seq-HyGAN: Sequence Classification via Hypergraph Attention Network
- URL: http://arxiv.org/abs/2303.02393v3
- Date: Thu, 15 Jun 2023 21:49:25 GMT
- Title: Seq-HyGAN: Sequence Classification via Hypergraph Attention Network
- Authors: Khaled Mohammed Saifuddin, Corey May, Farhan Tanvir, Muhammad Ifte
Khairul Islam, Esra Akbas
- Abstract summary: Sequence classification has a wide range of real-world applications in different domains, such as genome classification in health and anomaly detection in business.
The lack of explicit features in sequence data makes it difficult for machine learning models.
We propose a novel Hypergraph Attention Network model, namely Seq-HyGAN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequence classification has a wide range of real-world applications in
different domains, such as genome classification in health and anomaly
detection in business. However, the lack of explicit features in sequence data
makes it difficult for machine learning models. While Neural Network (NN)
models address this with learning features automatically, they are limited to
capturing adjacent structural connections and ignore global, higher-order
information between the sequences. To address these challenges in the sequence
classification problems, we propose a novel Hypergraph Attention Network model,
namely Seq-HyGAN. To capture the complex structural similarity between sequence
data, we first create a hypergraph where the sequences are depicted as
hyperedges and subsequences extracted from sequences are depicted as nodes.
Additionally, we introduce an attention-based Hypergraph Neural Network model
that utilizes a two-level attention mechanism. This model generates a sequence
representation as a hyperedge while simultaneously learning the crucial
subsequences for each sequence. We conduct extensive experiments on four data
sets to assess and compare our model with several state-of-the-art methods.
Experimental results demonstrate that our proposed Seq-HyGAN model can
effectively classify sequence data and significantly outperform the baselines.
We also conduct case studies to investigate the contribution of each module in
Seq-HyGAN.
Related papers
- SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
We introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way.
We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures.
The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network.
arXiv Detail & Related papers (2024-10-04T07:49:57Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Self-Supervised Pretraining for Heterogeneous Hypergraph Neural Networks [9.987252149421982]
We present a novel self-supervised pretraining framework for heterogeneous HyperGNNs.
Our method is able to effectively capture higher-order relations among entities in the data in a self-supervised manner.
Our experiments show that our proposed framework consistently outperforms state-of-the-art baselines in various downstream tasks.
arXiv Detail & Related papers (2023-11-19T16:34:56Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - Equivariant Hypergraph Diffusion Neural Operators [81.32770440890303]
Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data.
This work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators.
We evaluate ED-HNN for node classification on nine real-world hypergraph datasets.
arXiv Detail & Related papers (2022-07-14T06:17:00Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - Generative hypergraph clustering: from blockmodels to modularity [26.99290024958576]
We propose an expressive generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes.
We show that hypergraph Louvain is highly scalable, including as an example an experiment on a synthetic hypergraph of one million nodes.
We use our model to analyze different patterns of higher-order structure in school contact networks, U.S. congressional bill cosponsorship, U.S. congressional committees, product categories in co-purchasing behavior, and hotel locations.
arXiv Detail & Related papers (2021-01-24T00:25:22Z) - Conditional Hybrid GAN for Sequence Generation [56.67961004064029]
We propose a novel conditional hybrid GAN (C-Hybrid-GAN) to solve this issue.
We exploit the Gumbel-Softmax technique to approximate the distribution of discrete-valued sequences.
We demonstrate that the proposed C-Hybrid-GAN outperforms the existing methods in context-conditioned discrete-valued sequence generation.
arXiv Detail & Related papers (2020-09-18T03:52:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.