Online Bayesian system identification in multivariate autoregressive models via message passing
- URL: http://arxiv.org/abs/2506.02710v1
- Date: Tue, 03 Jun 2025 10:06:29 GMT
- Title: Online Bayesian system identification in multivariate autoregressive models via message passing
- Authors: T. N. Nisslbeck, Wouter M. Kouw,
- Abstract summary: Our method produces full posterior distributions for both the autoregressive coefficients and noise precision.<n>We demonstrate convergence empirically on a synthetic autoregressive system and competitive performance on a double mass-spring-damper system.
- Score: 3.4069627091757178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a recursive Bayesian estimation procedure for multivariate autoregressive models with exogenous inputs based on message passing in a factor graph. Unlike recursive least-squares, our method produces full posterior distributions for both the autoregressive coefficients and noise precision. The uncertainties regarding these estimates propagate into the uncertainties on predictions for future system outputs, and support online model evidence calculations. We demonstrate convergence empirically on a synthetic autoregressive system and competitive performance on a double mass-spring-damper system.
Related papers
- Variational Autoencoders for Efficient Simulation-Based Inference [0.3495246564946556]
We present a generative modeling approach based on the variational inference framework for likelihood-free simulation-based inference.
We demonstrate the efficacy of these models on well-established benchmark problems, achieving results comparable to flow-based approaches.
arXiv Detail & Related papers (2024-11-21T12:24:13Z) - Imitation Learning from Observations: An Autoregressive Mixture of Experts Approach [2.4427666827706074]
This paper presents a novel approach to imitation learning from observations, where an autoregressive mixture of experts model is deployed to fit the underlying policy.
The effectiveness of the proposed framework is validated using two autonomous driving datasets collected from human demonstrations.
arXiv Detail & Related papers (2024-11-12T22:56:28Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
Amortized Posterior Sampling is a novel variational inference approach for efficient posterior sampling in inverse problems.<n>Our method trains a conditional flow model to minimize the divergence between the variational distribution and the posterior distribution implicitly defined by the diffusion model.<n>Unlike existing methods, our approach is unsupervised, requires no paired training data, and is applicable to both Euclidean and non-Euclidean domains.
arXiv Detail & Related papers (2024-07-25T09:53:12Z) - Efficient computation of predictive probabilities in probit models via
expectation propagation [1.433758865948252]
We focus on the computation of predictive probabilities in Bayesian probit models via expectation propagation (EP)
We show that such predictive probabilities admit a closed-form expression.
Improvements over state-of-the-art approaches are shown in a simulation study.
arXiv Detail & Related papers (2023-09-04T14:21:44Z) - Bayesian Sparse Regression for Mixed Multi-Responses with Application to
Runtime Metrics Prediction in Fog Manufacturing [6.288767115532775]
Fog manufacturing can greatly enhance traditional manufacturing systems through distributed computation Fog units.
It is known that the predictive offloading methods highly depend on accurate prediction and uncertainty quantification of runtime performance metrics.
We propose a Bayesian sparse regression for multivariate mixed responses to enhance the prediction of runtime performance metrics.
arXiv Detail & Related papers (2022-10-10T16:14:08Z) - Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting [61.02295959343446]
This work first proposes a novel concept, collaborative uncertainty (CU), which models the uncertainty resulting from interaction modules.<n>We build a general CU-aware regression framework with an original permutation-equivariant uncertainty estimator to do both tasks of regression and uncertainty estimation.<n>We apply the proposed framework to current SOTA multi-agent trajectory forecasting systems as a plugin module.
arXiv Detail & Related papers (2022-07-11T21:17:41Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z) - Variational Auto-Regressive Gaussian Processes for Continual Learning [17.43751039943161]
We develop a principled posterior updating mechanism to solve sequential tasks in continual learning.
By relying on sparse inducing point approximations for scalable posteriors, we propose a novel auto-regressive variational distribution.
Mean predictive entropy estimates show VAR-GPs prevent catastrophic forgetting.
arXiv Detail & Related papers (2020-06-09T19:23:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.