Why do AI agents communicate in human language?
- URL: http://arxiv.org/abs/2506.02739v1
- Date: Tue, 03 Jun 2025 10:53:29 GMT
- Title: Why do AI agents communicate in human language?
- Authors: Pengcheng Zhou, Yinglun Feng, Halimulati Julaiti, Zhongliang Yang,
- Abstract summary: Large Language Models (LLMs) have become foundational to modern AI agent systems.<n>In most existing systems, inter-agent communication relies primarily on natural language.<n>We argue that this design introduces fundamental limitations in agent-to-agent coordination.
- Score: 6.784986834853486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have become foundational to modern AI agent systems, enabling autonomous agents to reason and plan. In most existing systems, inter-agent communication relies primarily on natural language. While this design supports interpretability and human oversight, we argue that it introduces fundamental limitations in agent-to-agent coordination. The semantic space of natural language is structurally misaligned with the high-dimensional vector spaces in which LLMs operate, resulting in information loss and behavioral drift. Beyond surface-level inefficiencies, we highlight a deeper architectural limitation: current LLMs were not trained with the objective of supporting agentic behavior. As such, they lack mechanisms for modeling role continuity, task boundaries, and multi-agent dependencies. The standard next-token prediction paradigm fails to support the structural alignment required for robust, scalable agent coordination. Based on this, we argue that two core questions deserve careful examination: first, given that AI agents fundamentally operate in high-dimensional vector spaces, should they rely on a language system originally designed for human cognition as their communication medium? Second, should we consider developing a new model construction paradigm that builds models from the ground up to natively support structured communication, shared intentionality, and task alignment in multi-role, multi-agent environments? This paper calls for a reconsideration not only of how agents should communicate, but also of what it fundamentally means to train a model that natively supports multi-agent coordination and communication.
Related papers
- Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - Small Language Models are the Future of Agentic AI [24.712103135486984]
We lay out the position that small language models (SLMs) are sufficiently powerful, inherently more suitable, and necessarily more economical for many invocations in agentic systems.<n>We discuss the potential barriers for the adoption of SLMs in agentic systems and outline a general LLM-to-SLM agent conversion algorithm.
arXiv Detail & Related papers (2025-06-02T18:35:16Z) - Agentic AI and Multiagentic: Are We Reinventing the Wheel? [0.0]
The term AI Agentic is often used as a buzzword for what are essentially AI agents, and AI Multiagentic for what are multi-agent systems.<n>This confusion overlooks decades of research in the field of autonomous agents and multi-agent systems.<n>The article advocates for scientific and technological rigour and the use of established terminology from the state of the art in AI.
arXiv Detail & Related papers (2025-06-02T09:19:11Z) - VQEL: Enabling Self-Developed Symbolic Language in Agents through Vector Quantization in Emergent Language Games [2.9948666437769713]
VQEL is a novel method that incorporates Vector Quantization into the agents' architecture.<n>It enables them to autonomously invent and develop discrete symbolic representations in a self-play referential game.<n>Our experiments demonstrate that VQEL not only outperforms the traditional REINFORCE method but also benefits from improved control and reduced susceptibility to collapse.
arXiv Detail & Related papers (2025-03-06T20:15:51Z) - Two Heads Are Better Than One: Collaborative LLM Embodied Agents for Human-Robot Interaction [1.6574413179773757]
Large language models (LLMs) should be able to leverage their large breadth of understanding to interpret natural language commands.
However, these models suffer from hallucinations, which may cause safety issues or deviations from the task.
In this research, multiple collaborative AI systems were tested against a single independent AI agent to determine whether the success in other domains would translate into improved human-robot interaction performance.
arXiv Detail & Related papers (2024-11-23T02:47:12Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
We introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own.
Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning.
We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks.
arXiv Detail & Related papers (2024-06-26T17:59:18Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Agents: An Open-source Framework for Autonomous Language Agents [98.91085725608917]
We consider language agents as a promising direction towards artificial general intelligence.
We release Agents, an open-source library with the goal of opening up these advances to a wider non-specialist audience.
arXiv Detail & Related papers (2023-09-14T17:18:25Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - Cognitive Architectures for Language Agents [44.89258267600489]
We propose Cognitive Architectures for Language Agents (CoALA)
CoALA describes a language agent with modular memory components, a structured action space to interact with internal memory and external environments, and a generalized decision-making process to choose actions.
We use CoALA to retrospectively survey and organize a large body of recent work, and prospectively identify actionable directions towards more capable agents.
arXiv Detail & Related papers (2023-09-05T17:56:20Z) - Networked Multi-Agent Reinforcement Learning with Emergent Communication [18.47483427884452]
Multi-Agent Reinforcement Learning (MARL) methods find optimal policies for agents that operate in the presence of other learning agents.
One way to coordinate is by learning to communicate with each other.
Can the agents develop a language while learning to perform a common task?
arXiv Detail & Related papers (2020-04-06T16:13:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.