VQEL: Enabling Self-Developed Symbolic Language in Agents through Vector Quantization in Emergent Language Games
- URL: http://arxiv.org/abs/2503.04940v1
- Date: Thu, 06 Mar 2025 20:15:51 GMT
- Title: VQEL: Enabling Self-Developed Symbolic Language in Agents through Vector Quantization in Emergent Language Games
- Authors: Mohammad Mahdi Samiei Paqaleh, Mahdieh Soleymani Baghshah,
- Abstract summary: VQEL is a novel method that incorporates Vector Quantization into the agents' architecture.<n>It enables them to autonomously invent and develop discrete symbolic representations in a self-play referential game.<n>Our experiments demonstrate that VQEL not only outperforms the traditional REINFORCE method but also benefits from improved control and reduced susceptibility to collapse.
- Score: 2.9948666437769713
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the field of emergent language, efforts have traditionally focused on developing communication protocols through interactions between agents in referential games. However, the aspect of internal language learning, where language serves not only as a communicative tool with others but also as a means for individual thinking, self-reflection, and problem-solving remains underexplored. Developing a language through self-play, without another agent's involvement, poses a unique challenge. It requires an agent to craft symbolic representations and train them using direct gradient methods. The challenge here is that if an agent attempts to learn symbolic representations through self-play using conventional modeling and techniques such as REINFORCE, the solution will offer no advantage over previous multi-agent approaches. We introduce VQEL, a novel method that incorporates Vector Quantization into the agents' architecture, enabling them to autonomously invent and develop discrete symbolic representations in a self-play referential game. Following the self-play phase, agents can enhance their language through reinforcement learning and interactions with other agents in the mutual-play phase. Our experiments across various datasets demonstrate that VQEL not only outperforms the traditional REINFORCE method but also benefits from improved control and reduced susceptibility to collapse, thanks to the incorporation of vector quantization.
Related papers
- Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
We introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own.
Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning.
We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks.
arXiv Detail & Related papers (2024-06-26T17:59:18Z) - Agents: An Open-source Framework for Autonomous Language Agents [98.91085725608917]
We consider language agents as a promising direction towards artificial general intelligence.
We release Agents, an open-source library with the goal of opening up these advances to a wider non-specialist audience.
arXiv Detail & Related papers (2023-09-14T17:18:25Z) - Cognitive Architectures for Language Agents [44.89258267600489]
We propose Cognitive Architectures for Language Agents (CoALA)
CoALA describes a language agent with modular memory components, a structured action space to interact with internal memory and external environments, and a generalized decision-making process to choose actions.
We use CoALA to retrospectively survey and organize a large body of recent work, and prospectively identify actionable directions towards more capable agents.
arXiv Detail & Related papers (2023-09-05T17:56:20Z) - Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization [103.70896967077294]
This paper introduces a principled framework for reinforcing large language agents by learning a retrospective model.
Our proposed agent architecture learns from rewards across multiple environments and tasks, for fine-tuning a pre-trained language model.
Experimental results on various tasks demonstrate that the language agents improve over time.
arXiv Detail & Related papers (2023-08-04T06:14:23Z) - Learning to Infer Belief Embedded Communication [9.862909791015237]
This paper introduces a novel algorithm to mimic an agent's language learning ability.
It contains a perception module for decoding other agents' intentions in response to their past actions.
It also includes a language generation module for learning implicit grammar during communication with two or more agents.
arXiv Detail & Related papers (2022-03-15T12:42:10Z) - Multi-lingual agents through multi-headed neural networks [0.0]
This paper focuses on cooperative Multi-Agent Reinforcement Learning.
In this context, multiple distinct and incompatible languages can emerge.
We take inspiration from the Continual Learning literature and equip our agents with multi-headed neural networks which enable our agents to be multi-lingual.
arXiv Detail & Related papers (2021-11-22T11:39:42Z) - Emergent Discrete Communication in Semantic Spaces [3.2280079436668996]
We propose a neural agent architecture that enables agents to communicate via discrete tokens derived from a learned, continuous space.
We show in a decision theoretic framework that our technique optimize communication over a wide range of scenarios, whereas one-hot tokens are only optimal under restrictive assumptions.
In self-play experiments, we validate that our trained agents learn to cluster tokens in semantically-meaningful ways, allowing them communicate in noisy environments.
arXiv Detail & Related papers (2021-08-04T03:32:48Z) - Multitasking Inhibits Semantic Drift [46.71462510028727]
We study the dynamics of learning in latent language policies (LLPs)
LLPs can solve challenging long-horizon reinforcement learning problems.
Previous work has found that LLP training is prone to semantic drift.
arXiv Detail & Related papers (2021-04-15T03:42:17Z) - Vokenization: Improving Language Understanding with Contextualized,
Visual-Grounded Supervision [110.66085917826648]
We develop a technique that extrapolates multimodal alignments to language-only data by contextually mapping language tokens to their related images.
"vokenization" is trained on relatively small image captioning datasets and we then apply it to generate vokens for large language corpora.
Trained with these contextually generated vokens, our visually-supervised language models show consistent improvements over self-supervised alternatives on multiple pure-language tasks.
arXiv Detail & Related papers (2020-10-14T02:11:51Z) - On the interaction between supervision and self-play in emergent
communication [82.290338507106]
We investigate the relationship between two categories of learning signals with the ultimate goal of improving sample efficiency.
We find that first training agents via supervised learning on human data followed by self-play outperforms the converse.
arXiv Detail & Related papers (2020-02-04T02:35:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.