Investigating Mask-aware Prototype Learning for Tabular Anomaly Detection
- URL: http://arxiv.org/abs/2506.02757v1
- Date: Tue, 03 Jun 2025 11:22:44 GMT
- Title: Investigating Mask-aware Prototype Learning for Tabular Anomaly Detection
- Authors: Ruiying Lu, Jinhan Liu, Chuan Du, Dandan Guo,
- Abstract summary: Tabular anomaly detection has been crucial in a variety of real-world applications, such as medical disease identification, financial fraud detection, intrusion monitoring, etc.<n>Recent deep learning-based methods suffer from representation entanglement and the lack of global correlation modeling, which hinders anomaly detection performance.<n>This paper introduces mask modeling and prototype learning to tackle the problem.
- Score: 10.59950164851305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tabular anomaly detection, which aims at identifying deviant samples, has been crucial in a variety of real-world applications, such as medical disease identification, financial fraud detection, intrusion monitoring, etc. Although recent deep learning-based methods have achieved competitive performances, these methods suffer from representation entanglement and the lack of global correlation modeling, which hinders anomaly detection performance. To tackle the problem, we incorporate mask modeling and prototype learning into tabular anomaly detection. The core idea is to design learnable masks by disentangled representation learning within a projection space and extracting normal dependencies as explicit global prototypes. Specifically, the overall model involves two parts: (i) During encoding, we perform mask modeling in both the data space and projection space with orthogonal basis vectors for learning shared disentangled normal patterns; (ii) During decoding, we decode multiple masked representations in parallel for reconstruction and learn association prototypes to extract normal characteristic correlations. Our proposal derives from a distribution-matching perspective, where both projection space learning and association prototype learning are formulated as optimal transport problems, and the calibration distances are utilized to refine the anomaly scores. Quantitative and qualitative experiments on 20 tabular benchmarks demonstrate the effectiveness and interpretability of our model.
Related papers
- CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types, and the scarcity of training data.<n>We propose CLIPfusion, a method that leverages both discriminative and generative foundation models.<n>We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection.
arXiv Detail & Related papers (2025-06-13T13:30:15Z) - Learning Compact and Robust Representations for Anomaly Detection [0.21427777919040417]
We propose a contrastive pretext task for anomaly detection that enforces three key properties.<n>These properties work together to ensure a more robust and discriminative feature space for anomaly detection.<n>Our approach achieves approximately 12x faster convergence than NT-Xent and 7x faster than Rot-SupCon, with superior performance.
arXiv Detail & Related papers (2025-01-09T10:33:16Z) - LADMIM: Logical Anomaly Detection with Masked Image Modeling in Discrete Latent Space [0.0]
Masked image modeling is a self-supervised learning technique that predicts the feature representation of masked regions in an image.
We propose a novel approach that leverages the characteristics of MIM to detect logical anomalies effectively.
We evaluate the proposed method on the MVTecLOCO dataset, achieving an average AUC of 0.867.
arXiv Detail & Related papers (2024-10-14T07:50:56Z) - MLAD: A Unified Model for Multi-system Log Anomaly Detection [35.68387377240593]
We propose MLAD, a novel anomaly detection model that incorporates semantic relational reasoning across multiple systems.
Specifically, we employ Sentence-bert to capture the similarities between log sequences and convert them into highly-dimensional learnable semantic vectors.
We revamp the formulas of the Attention layer to discern the significance of each keyword in the sequence and model the overall distribution of the multi-system dataset.
arXiv Detail & Related papers (2024-01-15T12:51:13Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Beyond Individual Input for Deep Anomaly Detection on Tabular Data [0.0]
Anomaly detection is vital in many domains, such as finance, healthcare, and cybersecurity.
To the best of our knowledge, this is the first work to successfully combine feature-feature and sample-sample dependencies.
Our method achieves state-of-the-art performance, outperforming existing methods by 2.4% and 1.2% in terms of F1-score and AUROC, respectively.
arXiv Detail & Related papers (2023-05-24T13:13:26Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Dual Contrastive Learning for General Face Forgery Detection [64.41970626226221]
We propose a novel face forgery detection framework, named Dual Contrastive Learning (DCL), which constructs positive and negative paired data.
To explore the essential discrepancies, Intra-Instance Contrastive Learning (Intra-ICL) is introduced to focus on the local content inconsistencies prevalent in the forged faces.
arXiv Detail & Related papers (2021-12-27T05:44:40Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.