Learned Controllers for Agile Quadrotors in Pursuit-Evasion Games
- URL: http://arxiv.org/abs/2506.02849v1
- Date: Tue, 03 Jun 2025 13:19:23 GMT
- Title: Learned Controllers for Agile Quadrotors in Pursuit-Evasion Games
- Authors: Alejandro Sanchez Roncero, Olov Andersson, Petter Ogren,
- Abstract summary: We present a reinforcement learning framework for agile 1v1 quadrotor pursuit-evasion.<n>We train neural network policies to command body rates and collective thrust, enabling high-speed pursuit and evasive maneuvers.<n>Our results show that rate-based policies achieve significantly higher capture rates and peak speeds than velocity-level baselines.
- Score: 46.53041975119627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing proliferation of small UAVs in civilian and military airspace has raised critical safety and security concerns, especially when unauthorized or malicious drones enter restricted zones. In this work, we present a reinforcement learning (RL) framework for agile 1v1 quadrotor pursuit-evasion. We train neural network policies to command body rates and collective thrust, enabling high-speed pursuit and evasive maneuvers that fully exploit the quadrotor's nonlinear dynamics. To mitigate nonstationarity and catastrophic forgetting during adversarial co-training, we introduce an Asynchronous Multi-Stage Population-Based (AMSPB) algorithm where, at each stage, either the pursuer or evader learns against a sampled opponent drawn from a growing population of past and current policies. This continual learning setup ensures monotonic performance improvement and retention of earlier strategies. Our results show that (i) rate-based policies achieve significantly higher capture rates and peak speeds than velocity-level baselines, and (ii) AMSPB yields stable, monotonic gains against a suite of benchmark opponents.
Related papers
- Reinforcement Learning for Decision-Level Interception Prioritization in Drone Swarm Defense [56.47577824219207]
We present a case study demonstrating the practical advantages of reinforcement learning in addressing this challenge.<n>We introduce a high-fidelity simulation environment that captures realistic operational constraints.<n>Agent learns to coordinate multiple effectors for optimal interception prioritization.<n>We evaluate the learned policy against a handcrafted rule-based baseline across hundreds of simulated attack scenarios.
arXiv Detail & Related papers (2025-08-01T13:55:39Z) - Sharpening the Spear: Adaptive Expert-Guided Adversarial Attack Against DRL-based Autonomous Driving Policies [3.5120264792560993]
Deep reinforcement learning (DRL) has emerged as a promising paradigm for autonomous driving.<n>DRL-based policies remain highly vulnerable to adversarial attacks, posing serious safety risks in real-world deployments.<n>We propose an adaptive expert-guided adversarial attack method that enhances both the stability and efficiency of attack policy training.
arXiv Detail & Related papers (2025-06-23T05:42:49Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Robust Reinforcement Learning using Adversarial Populations [118.73193330231163]
Reinforcement Learning (RL) is an effective tool for controller design but can struggle with issues of robustness.
We show that using a single adversary does not consistently yield robustness to dynamics variations under standard parametrizations of the adversary.
We propose a population-based augmentation to the Robust RL formulation in which we randomly initialize a population of adversaries and sample from the population uniformly during training.
arXiv Detail & Related papers (2020-08-04T20:57:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.