Pan-Arctic Permafrost Landform and Human-built Infrastructure Feature Detection with Vision Transformers and Location Embeddings
- URL: http://arxiv.org/abs/2506.02868v1
- Date: Tue, 03 Jun 2025 13:34:01 GMT
- Title: Pan-Arctic Permafrost Landform and Human-built Infrastructure Feature Detection with Vision Transformers and Location Embeddings
- Authors: Amal S. Perera, David Fernandez, Chandi Witharana, Elias Manos, Michael Pimenta, Anna K. Liljedahl, Ingmar Nitze, Yili Yang, Todd Nicholson, Chia-Yu Hsu, Wenwen Li, Guido Grosse,
- Abstract summary: Vision Transformers (ViTs) offer advantages in capturing long-range dependencies and global context via attention mechanisms.<n>ViTs support pretraining via self-supervised learning-addressing the common limitation of labeled data in Arctic feature detection.<n>This work investigates: (1) the suitability of pre-trained ViTs as feature extractors for high-resolution Arctic remote sensing tasks, and (2) the benefit of combining image and location embeddings.
- Score: 1.2895931807247418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate mapping of permafrost landforms, thaw disturbances, and human-built infrastructure at pan-Arctic scale using sub-meter satellite imagery is increasingly critical. Handling petabyte-scale image data requires high-performance computing and robust feature detection models. While convolutional neural network (CNN)-based deep learning approaches are widely used for remote sensing (RS),similar to the success in transformer based large language models, Vision Transformers (ViTs) offer advantages in capturing long-range dependencies and global context via attention mechanisms. ViTs support pretraining via self-supervised learning-addressing the common limitation of labeled data in Arctic feature detection and outperform CNNs on benchmark datasets. Arctic also poses challenges for model generalization, especially when features with the same semantic class exhibit diverse spectral characteristics. To address these issues for Arctic feature detection, we integrate geospatial location embeddings into ViTs to improve adaptation across regions. This work investigates: (1) the suitability of pre-trained ViTs as feature extractors for high-resolution Arctic remote sensing tasks, and (2) the benefit of combining image and location embeddings. Using previously published datasets for Arctic feature detection, we evaluate our models on three tasks-detecting ice-wedge polygons (IWP), retrogressive thaw slumps (RTS), and human-built infrastructure. We empirically explore multiple configurations to fuse image embeddings and location embeddings. Results show that ViTs with location embeddings outperform prior CNN-based models on two of the three tasks including F1 score increase from 0.84 to 0.92 for RTS detection, demonstrating the potential of transformer-based models with spatial awareness for Arctic RS applications.
Related papers
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management.<n>Most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions.<n>We observe that frequency-domain feature modeling particularly in the wavelet domain amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain.
arXiv Detail & Related papers (2025-08-07T11:14:16Z) - A multi-scale vision transformer-based multimodal GeoAI model for mapping Arctic permafrost thaw [2.906027992527643]
Retro Thaw Slumps (RTS) in Arctic regions are distinct permafrost landforms with significant environmental impacts.<n>This paper employed a state-of-the-art deep learning model, the Mask R-CNN, to delineate RTS features across the Arctic.<n>Two new strategies were introduced to optimize multimodal learning and enhance the model's predictive performance.
arXiv Detail & Related papers (2025-04-23T22:18:10Z) - A Deep Learning Architecture for Land Cover Mapping Using Spatio-Temporal Sentinel-1 Features [1.907072234794597]
The study focuses on three distinct regions - Amazonia, Africa, and Siberia - and evaluates the model performance across diverse ecoregions within these areas.<n>The results demonstrate the effectiveness and the capabilities of the proposed methodology in achieving overall accuracy (O.A.) values, even in regions with limited training data.
arXiv Detail & Related papers (2025-03-10T12:15:35Z) - AMBER -- Advanced SegFormer for Multi-Band Image Segmentation: an application to Hyperspectral Imaging [0.0]
This paper introduces AMBER, an advanced SegFormer specifically designed for multi-band image segmentation.<n>AMBER enhances the original SegFormer by incorporating three-dimensional convolutions, custom kernel sizes, and a Funnelizer layer.<n>Our experiments, conducted on three benchmark datasets and on a dataset from the PRISMA satellite, show that AMBER outperforms traditional CNN-based methods in terms of Overall Accuracy, Kappa coefficient, and Average Accuracy.
arXiv Detail & Related papers (2024-09-14T09:34:05Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - No-Reference Image Quality Assessment with Global-Local Progressive Integration and Semantic-Aligned Quality Transfer [6.095342999639137]
We develop a dual-measurement framework that combines vision Transformer (ViT)-based global feature extractor and convolutional neural networks (CNNs)-based local feature extractor.<n>We introduce a semantic-aligned quality transfer method that extends the training data by automatically labeling the quality scores of diverse image content with subjective opinion scores.
arXiv Detail & Related papers (2024-08-07T16:34:32Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Leveraging Swin Transformer for Local-to-Global Weakly Supervised
Semantic Segmentation [12.103012959947055]
This work explores the use of Swin Transformer by proposing "SWTformer" to enhance the accuracy of the initial seed CAMs.
SWTformer-V1 achieves a 0.98% mAP higher localization accuracy, outperforming state-of-the-art models.
SWTformer-V2 incorporates a multi-scale feature fusion mechanism to extract additional information.
arXiv Detail & Related papers (2024-01-31T13:41:17Z) - Sub-token ViT Embedding via Stochastic Resonance Transformers [51.12001699637727]
Vision Transformer (ViT) architectures represent images as collections of high-dimensional vectorized tokens, each corresponding to a rectangular non-overlapping patch.
We propose a training-free method inspired by "stochastic resonance"
The resulting "Stochastic Resonance Transformer" (SRT) retains the rich semantic information of the original representation, but grounds it on a finer-scale spatial domain, partly mitigating the coarse effect of spatial tokenization.
arXiv Detail & Related papers (2023-10-06T01:53:27Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - DFTR: Depth-supervised Hierarchical Feature Fusion Transformer for
Salient Object Detection [44.94166578314837]
We propose a pure Transformer-based SOD framework, namely Depth-supervised hierarchical feature Fusion TRansformer (DFTR)
We extensively evaluate the proposed DFTR on ten benchmarking datasets. Experimental results show that our DFTR consistently outperforms the existing state-of-the-art methods for both RGB and RGB-D SOD tasks.
arXiv Detail & Related papers (2022-03-12T12:59:12Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
We propose a new dynamic modality-aware filter generation module (named MFGNet) to boost the message communication between visible and thermal data.
We generate dynamic modality-aware filters with two independent networks. The visible and thermal filters will be used to conduct a dynamic convolutional operation on their corresponding input feature maps respectively.
To address issues caused by heavy occlusion, fast motion, and out-of-view, we propose to conduct a joint local and global search by exploiting a new direction-aware target-driven attention mechanism.
arXiv Detail & Related papers (2021-07-22T03:10:51Z) - GANav: Group-wise Attention Network for Classifying Navigable Regions in
Unstructured Outdoor Environments [54.21959527308051]
We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images.
Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation.
We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation.
arXiv Detail & Related papers (2021-03-07T02:16:24Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.