A Continual Offline Reinforcement Learning Benchmark for Navigation Tasks
- URL: http://arxiv.org/abs/2506.02883v1
- Date: Tue, 03 Jun 2025 13:48:20 GMT
- Title: A Continual Offline Reinforcement Learning Benchmark for Navigation Tasks
- Authors: Anthony Kobanda, Odalric-Ambrym Maillard, Rémy Portelas,
- Abstract summary: We introduce a benchmark providing a suite of video-game navigation scenarios.<n>We define a set of various tasks and datasets, evaluation protocols, and metrics to assess the performance of algorithms.
- Score: 13.804488794709806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous agents operating in domains such as robotics or video game simulations must adapt to changing tasks without forgetting about the previous ones. This process called Continual Reinforcement Learning poses non-trivial difficulties, from preventing catastrophic forgetting to ensuring the scalability of the approaches considered. Building on recent advances, we introduce a benchmark providing a suite of video-game navigation scenarios, thus filling a gap in the literature and capturing key challenges : catastrophic forgetting, task adaptation, and memory efficiency. We define a set of various tasks and datasets, evaluation protocols, and metrics to assess the performance of algorithms, including state-of-the-art baselines. Our benchmark is designed not only to foster reproducible research and to accelerate progress in continual reinforcement learning for gaming, but also to provide a reproducible framework for production pipelines -- helping practitioners to identify and to apply effective approaches.
Related papers
- Test-time Offline Reinforcement Learning on Goal-related Experience [50.94457794664909]
Research in foundation models has shown that performance can be substantially improved through test-time training.<n>We propose a novel self-supervised data selection criterion, which selects transitions from an offline dataset according to their relevance to the current state.<n>Our goal-conditioned test-time training (GC-TTT) algorithm applies this routine in a receding-horizon fashion during evaluation, adapting the policy to the current trajectory as it is being rolled out.
arXiv Detail & Related papers (2025-07-24T21:11:39Z) - Reinforcement Learning via Implicit Imitation Guidance [49.88208134736617]
A natural approach is to incorporate an imitation learning objective, either as regularization during training or to acquire a reference policy.<n>We propose to use prior data solely for guiding exploration via noise added to the policy, sidestepping the need for explicit behavior cloning constraints.<n>Our approach achieves up to 2-3x improvement over prior reinforcement learning from offline methods across seven simulated continuous control tasks.
arXiv Detail & Related papers (2025-06-09T07:32:52Z) - Online Continual Learning: A Systematic Literature Review of Approaches, Challenges, and Benchmarks [1.3631535881390204]
Online Continual Learning (OCL) is a critical area in machine learning.<n>This study conducts the first comprehensive Systematic Literature Review on OCL.
arXiv Detail & Related papers (2025-01-09T01:03:14Z) - Hierarchical Subspaces of Policies for Continual Offline Reinforcement Learning [19.463863037999054]
We consider a Continual Reinforcement Learning setup, where a learning agent must continuously adapt to new tasks while retaining previously acquired skill sets.<n>We introduce HiSPO, a novel hierarchical framework designed specifically for continual learning in navigation settings from offline data.<n>We demonstrate, through a careful experimental study, the effectiveness of our method in both classical MuJoCo maze environments and complex video game-like navigation simulations.
arXiv Detail & Related papers (2024-12-19T14:00:03Z) - Offline Reinforcement Learning from Datasets with Structured Non-Stationarity [50.35634234137108]
Current Reinforcement Learning (RL) is often limited by the large amount of data needed to learn a successful policy.
We address a novel Offline RL problem setting in which, while collecting the dataset, the transition and reward functions gradually change between episodes but stay constant within each episode.
We propose a method based on Contrastive Predictive Coding that identifies this non-stationarity in the offline dataset, accounts for it when training a policy, and predicts it during evaluation.
arXiv Detail & Related papers (2024-05-23T02:41:36Z) - Clustering-based Domain-Incremental Learning [4.835091081509403]
Key challenge in continual learning is the so-called "catastrophic forgetting problem"
We propose an online clustering-based approach on a dynamically updated finite pool of samples or gradients.
We demonstrate the effectiveness of the proposed strategy and its promising performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-09-21T13:49:05Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Algorithm Design for Online Meta-Learning with Task Boundary Detection [63.284263611646]
We propose a novel algorithm for task-agnostic online meta-learning in non-stationary environments.
We first propose two simple but effective detection mechanisms of task switches and distribution shift.
We show that a sublinear task-averaged regret can be achieved for our algorithm under mild conditions.
arXiv Detail & Related papers (2023-02-02T04:02:49Z) - Learning Goal-Conditioned Policies Offline with Self-Supervised Reward
Shaping [94.89128390954572]
We propose a novel self-supervised learning phase on the pre-collected dataset to understand the structure and the dynamics of the model.
We evaluate our method on three continuous control tasks, and show that our model significantly outperforms existing approaches.
arXiv Detail & Related papers (2023-01-05T15:07:10Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
Several object detection methods have been proposed in the literature, the vast majority based on Deep Convolutional Neural Networks (DCNNs)
These methods have important limitations for robotics: Learning solely on off-line data may introduce biases, and prevents adaptation to novel tasks.
In this work, we investigate how weakly-supervised learning can cope with these problems.
arXiv Detail & Related papers (2020-12-28T16:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.