Reinforcement Learning via Implicit Imitation Guidance
- URL: http://arxiv.org/abs/2506.07505v1
- Date: Mon, 09 Jun 2025 07:32:52 GMT
- Title: Reinforcement Learning via Implicit Imitation Guidance
- Authors: Perry Dong, Alec M. Lessing, Annie S. Chen, Chelsea Finn,
- Abstract summary: A natural approach is to incorporate an imitation learning objective, either as regularization during training or to acquire a reference policy.<n>We propose to use prior data solely for guiding exploration via noise added to the policy, sidestepping the need for explicit behavior cloning constraints.<n>Our approach achieves up to 2-3x improvement over prior reinforcement learning from offline methods across seven simulated continuous control tasks.
- Score: 49.88208134736617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of sample efficient reinforcement learning, where prior data such as demonstrations are provided for initialization in lieu of a dense reward signal. A natural approach is to incorporate an imitation learning objective, either as regularization during training or to acquire a reference policy. However, imitation learning objectives can ultimately degrade long-term performance, as it does not directly align with reward maximization. In this work, we propose to use prior data solely for guiding exploration via noise added to the policy, sidestepping the need for explicit behavior cloning constraints. The key insight in our framework, Data-Guided Noise (DGN), is that demonstrations are most useful for identifying which actions should be explored, rather than forcing the policy to take certain actions. Our approach achieves up to 2-3x improvement over prior reinforcement learning from offline data methods across seven simulated continuous control tasks.
Related papers
- Value from Observations: Towards Large-Scale Imitation Learning via Self-Improvement [19.883973457999282]
Imitation Learning from Observation (IfO) offers a powerful way to learn behaviors at large-scale.<n>This paper investigates idealized scenarios with mostly bimodal-quality data distributions and introduces a method to learn from such data.<n>Our method adapts RL-based imitation learning to action-free demonstrations, using a value function to transfer information between expert and non-expert data.
arXiv Detail & Related papers (2025-07-09T09:55:23Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Inverse-RLignment: Large Language Model Alignment from Demonstrations through Inverse Reinforcement Learning [62.05713042908654]
We introduce Alignment from Demonstrations (AfD), a novel approach leveraging high-quality demonstration data to overcome these challenges.<n>We formalize AfD within a sequential decision-making framework, highlighting its unique challenge of missing reward signals.<n> Practically, we propose a computationally efficient algorithm that extrapolates over a tailored reward model for AfD.
arXiv Detail & Related papers (2024-05-24T15:13:53Z) - Offline Reinforcement Learning from Datasets with Structured Non-Stationarity [50.35634234137108]
Current Reinforcement Learning (RL) is often limited by the large amount of data needed to learn a successful policy.
We address a novel Offline RL problem setting in which, while collecting the dataset, the transition and reward functions gradually change between episodes but stay constant within each episode.
We propose a method based on Contrastive Predictive Coding that identifies this non-stationarity in the offline dataset, accounts for it when training a policy, and predicts it during evaluation.
arXiv Detail & Related papers (2024-05-23T02:41:36Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Goal-Conditioned Imitation Learning using Score-based Diffusion Policies [3.49482137286472]
We propose a new policy representation based on score-based diffusion models (SDMs)
We apply our new policy representation in the domain of Goal-Conditioned Imitation Learning (GCIL)
We show how BESO can even be used to learn a goal-independent policy from play-data usingintuitive-free guidance.
arXiv Detail & Related papers (2023-04-05T15:52:34Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
offline reinforcement learning aims to train a policy on a pre-recorded and fixed dataset without any additional environment interactions.
We build upon recent works on learning policies in latent action spaces and use a special form of Normalizing Flows for constructing a generative model.
We evaluate our method on various locomotion and navigation tasks, demonstrating that our approach outperforms recently proposed algorithms.
arXiv Detail & Related papers (2022-11-20T21:57:10Z) - TempoRL: Temporal Priors for Exploration in Off-Policy Reinforcement
Learning [33.512849582347734]
We propose to learn features from offline data that are shared by a more diverse range of tasks.
We introduce state-independent temporal priors, which directly model temporal consistency in demonstrated trajectories.
We also introduce a novel integration scheme for action priors in off-policy reinforcement learning.
arXiv Detail & Related papers (2022-05-26T17:49:12Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.