Adaptive Exploration in Lenia with Intrinsic Multi-Objective Ranking
- URL: http://arxiv.org/abs/2506.02990v1
- Date: Tue, 03 Jun 2025 15:26:47 GMT
- Title: Adaptive Exploration in Lenia with Intrinsic Multi-Objective Ranking
- Authors: Niko Lorantos, Lee Spector,
- Abstract summary: This work investigates mechanisms to promote exploration and unbounded innovation within evolving populations of Lenia continuous cellular automata.<n>We argue that adaptive exploration improves evolutionary dynamics and serves as an important step toward achieving open-ended evolution in artificial systems.
- Score: 3.2228025627337864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial life aims to understand the fundamental principles of biological life by creating computational models that exhibit life-like properties. Although artificial life systems show promise for simulating biological evolution, achieving open-endedness remains a central challenge. This work investigates mechanisms to promote exploration and unbounded innovation within evolving populations of Lenia continuous cellular automata by evaluating individuals against each other with respect to distinctiveness, population sparsity, and homeostatic regulation. Multi-objective ranking of these intrinsic fitness objectives encourages the perpetual selection of novel and explorative individuals in sparse regions of the descriptor space without restricting the scope of emergent behaviors. We present experiments demonstrating the effectiveness of our multi-objective approach and emphasize that intrinsic evolution allows diverse expressions of artificial life to emerge. We argue that adaptive exploration improves evolutionary dynamics and serves as an important step toward achieving open-ended evolution in artificial systems.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI [98.19195693735487]
We propose the paradigm of Intelligent Science Laboratories (ISLs)<n>ISLs are a multi-layered, closed-loop framework that deeply integrates cognitive and embodied intelligence.<n>We argue that such systems are essential for overcoming the current limitations of scientific discovery.
arXiv Detail & Related papers (2025-06-24T13:31:44Z) - Flow-Lenia: Emergent evolutionary dynamics in mass conservative continuous cellular automata [17.764206513343684]
We propose Flow-Lenia, a mass conservative extension of Lenia.<n>We show that Flow-Lenia allows us to embed the parameters of the model, defining the properties of the emerging patterns.<n>We shed light on the emergent evolutionary dynamics taking place in this system.
arXiv Detail & Related papers (2025-06-10T08:37:26Z) - Emergence of Implicit World Models from Mortal Agents [0.276240219662896]
We discuss the possibility of world models and active exploration as emergent properties of open-ended behavior optimization in autonomous agents.
In discussing the source of the open-endedness of living things, we start from the perspective of biological systems as understood by the mechanistic approach of theoretical biology and artificial life.
arXiv Detail & Related papers (2024-11-19T07:43:30Z) - Emergent Collective Reproduction via Evolving Neuronal Flocks [0.0]
This study facilitates the understanding of evolutionary transitions in individuality (ETIs) through a novel artificial life framework, named VitaNova.
VitaNova intricately merges self-organization and natural selection to simulate the emergence of complex, reproductive groups.
arXiv Detail & Related papers (2024-09-20T06:22:24Z) - Toward Artificial Open-Ended Evolution within Lenia using Quality-Diversity [5.380545611878407]
We show that Quality-Diversity is an effective framework for the automatic discovery of diverse self-organizing patterns in complex systems.
Our framework, called Leniabreeder, can leverage both manually defined diversity criteria and unsupervised measures of diversity to broaden the scope of discoverable patterns.
arXiv Detail & Related papers (2024-06-06T16:35:27Z) - Agent Alignment in Evolving Social Norms [65.45423591744434]
We propose an evolutionary framework for agent evolution and alignment, named EvolutionaryAgent.
In an environment where social norms continuously evolve, agents better adapted to the current social norms will have a higher probability of survival and proliferation.
We show that EvolutionaryAgent can align progressively better with the evolving social norms while maintaining its proficiency in general tasks.
arXiv Detail & Related papers (2024-01-09T15:44:44Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Towards Large-Scale Simulations of Open-Ended Evolution in Continuous
Cellular Automata [0.0]
We build large-scale evolutionary simulations using parallel computing framework JAX.
We report a number of system design choices, including implicit implementation of genetic operators.
We propose several factors that may further facilitate open-ended evolution.
arXiv Detail & Related papers (2023-04-12T06:40:11Z) - The scaling of goals via homeostasis: an evolutionary simulation,
experiment and analysis [0.0]
We propose that evolution pivoted the collective intelligence of cells during morphogenesis into behavioral intelligence by scaling up the goal states at the center of homeostatic processes.
We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve its target morphology.
We propose that this system is a first step toward a quantitative understanding of how evolution scales minimal goal-directed behavior (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
arXiv Detail & Related papers (2022-11-15T21:48:44Z) - The Introspective Agent: Interdependence of Strategy, Physiology, and
Sensing for Embodied Agents [51.94554095091305]
We argue for an introspective agent, which considers its own abilities in the context of its environment.
Just as in nature, we hope to reframe strategy as one tool, among many, to succeed in an environment.
arXiv Detail & Related papers (2022-01-02T20:14:01Z) - Emergent Hand Morphology and Control from Optimizing Robust Grasps of
Diverse Objects [63.89096733478149]
We introduce a data-driven approach where effective hand designs naturally emerge for the purpose of grasping diverse objects.
We develop a novel Bayesian Optimization algorithm that efficiently co-designs the morphology and grasping skills jointly.
We demonstrate the effectiveness of our approach in discovering robust and cost-efficient hand morphologies for grasping novel objects.
arXiv Detail & Related papers (2020-12-22T17:52:29Z) - Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning [12.76337275628074]
In this work, we propose a variational dynamic model based on the conditional variational inference to model the multimodality andgenerativeity.
We derive an upper bound of the negative log-likelihood of the environmental transition and use such an upper bound as the intrinsic reward for exploration.
Our method outperforms several state-of-the-art environment model-based exploration approaches.
arXiv Detail & Related papers (2020-10-17T09:54:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.