Emergent Collective Reproduction via Evolving Neuronal Flocks
- URL: http://arxiv.org/abs/2409.13254v1
- Date: Fri, 20 Sep 2024 06:22:24 GMT
- Title: Emergent Collective Reproduction via Evolving Neuronal Flocks
- Authors: Nam H. Le, Richard Watson, Mike Levin, Chrys Buckley,
- Abstract summary: This study facilitates the understanding of evolutionary transitions in individuality (ETIs) through a novel artificial life framework, named VitaNova.
VitaNova intricately merges self-organization and natural selection to simulate the emergence of complex, reproductive groups.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study facilitates the understanding of evolutionary transitions in individuality (ETIs) through a novel artificial life framework, named VitaNova, that intricately merges self-organization and natural selection to simulate the emergence of complex, reproductive groups. By dynamically modelling individual agents within an environment that challenges them with predators and spatial constraints, VitaNova elucidates the mechanisms by which simple agents evolve into cohesive units exhibiting collective reproduction. The findings underscore the synergy between self-organized behaviours and adaptive evolutionary strategies as fundamental drivers of ETIs. This approach not only contributes to a deeper understanding of higher-order biological individuality but also sets a new precedent in the empirical investigation of ETIs, challenging and extending current theoretical frameworks.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - Adaptive Exploration in Lenia with Intrinsic Multi-Objective Ranking [3.2228025627337864]
This work investigates mechanisms to promote exploration and unbounded innovation within evolving populations of Lenia continuous cellular automata.<n>We argue that adaptive exploration improves evolutionary dynamics and serves as an important step toward achieving open-ended evolution in artificial systems.
arXiv Detail & Related papers (2025-06-03T15:26:47Z) - SynEVO: A neuro-inspired spatiotemporal evolutional framework for cross-domain adaptation [12.965961860022427]
The key towards increasing cross-domain knowledge is to enable collective andtemporal intelligence model evolution.<n>We propose a Synaptic EVOtic network, where SynEVO breaks the model independence and enables cross-domain knowledge to be shared and aggregated.<n>Experiments show that SynEVO improves the generalization by most under cross-domain scenarios.
arXiv Detail & Related papers (2025-05-21T23:45:51Z) - UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion [61.690978792873196]
Existing approaches rely on either autoregressive sequence models or diffusion models.
We propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models.
We validate the effectiveness of UniGenX on material and small molecule generation tasks.
arXiv Detail & Related papers (2025-03-09T16:43:07Z) - Evolution of Collective AI Beyond Individual Optimization [1.9285802620041357]
This study investigates collective behaviors that emerge from a group of homogeneous individuals optimized for a specific capability.
We created a group of simple, identical neural network based agents modeled after chemotaxis-driven vehicles that follow pheromone trails.
Our results show that the evolution of individuals led to population differentiation.
arXiv Detail & Related papers (2024-12-03T02:03:36Z) - Evolving Neural Networks Reveal Emergent Collective Behavior from Minimal Agent Interactions [0.0]
We investigate how neural networks evolve to control agents' behavior in a dynamic environment.
Simpler behaviors, such as lane formation and laminar flow, are characterized by more linear network operations.
Specific environmental parameters, such as moderate noise, broader field of view, and lower agent density, promote the evolution of non-linear networks.
arXiv Detail & Related papers (2024-10-25T17:43:00Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
We show that CELL can adaptively evolve into different models for different tasks and data.
Experiments on four real-world datasets demonstrate that CELL significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-05-29T02:35:23Z) - Emergence of specialized Collective Behaviors in Evolving Heterogeneous
Swarms [3.918604886944516]
Natural groups of animals, such as swarms of social insects, exhibit astonishing degrees of task specialization.
We evolve a swarm of simulated robots with phenotypic plasticity to study the emergence of specialized collective behavior.
arXiv Detail & Related papers (2024-02-07T11:26:53Z) - When large language models meet evolutionary algorithms [48.213640761641926]
Pre-trained large language models (LLMs) have powerful capabilities for generating creative natural text.
Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems.
Motivated by the common collective and directionality of text generation and evolution, this paper illustrates the parallels between LLMs and EAs.
arXiv Detail & Related papers (2024-01-19T05:58:30Z) - Agent Alignment in Evolving Social Norms [65.45423591744434]
We propose an evolutionary framework for agent evolution and alignment, named EvolutionaryAgent.
In an environment where social norms continuously evolve, agents better adapted to the current social norms will have a higher probability of survival and proliferation.
We show that EvolutionaryAgent can align progressively better with the evolving social norms while maintaining its proficiency in general tasks.
arXiv Detail & Related papers (2024-01-09T15:44:44Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
Continual learning aims to empower artificial intelligence with strong adaptability to the real world.
Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting.
We propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity.
arXiv Detail & Related papers (2023-08-29T02:43:58Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - The scaling of goals via homeostasis: an evolutionary simulation,
experiment and analysis [0.0]
We propose that evolution pivoted the collective intelligence of cells during morphogenesis into behavioral intelligence by scaling up the goal states at the center of homeostatic processes.
We found that these emergent morphogenetic agents exhibit a number of predicted features, including the use of stress propagation dynamics to achieve its target morphology.
We propose that this system is a first step toward a quantitative understanding of how evolution scales minimal goal-directed behavior (homeostatic loops) into higher-level problem-solving agents in morphogenetic and other spaces.
arXiv Detail & Related papers (2022-11-15T21:48:44Z) - Understanding Emergent Behaviours in Multi-Agent Systems with
Evolutionary Game Theory [1.0279748604797907]
This paper summarises some main research directions and challenges tackled in our group, using methods from EGT and ABM.
This brief aims to sensitize the reader to EGT based issues, results and prospects, which are accruing in importance for the modeling of minds with machines.
In all cases, important open problems in MAS research as viewed or prioritised by the group are described.
arXiv Detail & Related papers (2022-05-15T20:01:48Z) - An active inference model of collective intelligence [0.0]
This paper posits a minimal agent-based model that simulates the relationship between local individual-level interaction and collective intelligence.
Results show that stepwise cognitive transitions increase system performance by providing complementary mechanisms for alignment between agents' local and global optima.
arXiv Detail & Related papers (2021-04-02T14:32:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.