AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation
- URL: http://arxiv.org/abs/2506.03122v1
- Date: Tue, 03 Jun 2025 17:54:30 GMT
- Title: AUTOCIRCUIT-RL: Reinforcement Learning-Driven LLM for Automated Circuit Topology Generation
- Authors: Prashanth Vijayaraghavan, Luyao Shi, Ehsan Degan, Vandana Mukherjee, Xin Zhang,
- Abstract summary: AUTOCIRCUIT-RL is a novel reinforcement learning-based framework for automated analog circuit synthesis.<n>It generates 12% more valid circuits and improves efficiency by 14% compared to the best baselines.<n>It achieves over 60% success in valid circuits with limited training data, demonstrating strong generalization.
- Score: 6.2730802180534155
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Analog circuit topology synthesis is integral to Electronic Design Automation (EDA), enabling the automated creation of circuit structures tailored to specific design requirements. However, the vast design search space and strict constraint adherence make efficient synthesis challenging. Leveraging the versatility of Large Language Models (LLMs), we propose AUTOCIRCUIT-RL,a novel reinforcement learning (RL)-based framework for automated analog circuit synthesis. The framework operates in two phases: instruction tuning, where an LLM learns to generate circuit topologies from structured prompts encoding design constraints, and RL refinement, which further improves the instruction-tuned model using reward models that evaluate validity, efficiency, and output voltage. The refined model is then used directly to generate topologies that satisfy the design constraints. Empirical results show that AUTOCIRCUIT-RL generates ~12% more valid circuits and improves efficiency by ~14% compared to the best baselines, while reducing duplicate generation rates by ~38%. It achieves over 60% success in synthesizing valid circuits with limited training data, demonstrating strong generalization. These findings highlight the framework's effectiveness in scaling to complex circuits while maintaining efficiency and constraint adherence, marking a significant advancement in AI-driven circuit design.
Related papers
- Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation [53.16213723669751]
Large-scale models (LSMs) can be an effective framework for semantic representation and understanding.<n>However, their direct deployment is often hindered by high computational complexity and resource requirements.<n>This paper proposes a novel knowledge distillation based semantic communication framework.
arXiv Detail & Related papers (2025-08-04T07:47:18Z) - CROP: Circuit Retrieval and Optimization with Parameter Guidance using LLMs [4.481239665281804]
We present CROP, the first large language model (LLM)-powered automatic VLSI design flow tuning framework.<n>Our approach includes: (1) a scalable methodology for transforming RTL source code into dense vector representations, (2) an embedding-based retrieval system for matching designs with semantically similar circuits, and (3) a retrieval-augmented generation (RAG)-enhanced LLM-guided parameter search system.<n>Experiment results demonstrate CROP's ability to achieve superior quality-of-results (QoR) with fewer iterations than existing approaches on industrial designs, including a 9.9% reduction in power consumption.
arXiv Detail & Related papers (2025-07-02T20:25:47Z) - Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-lite is a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL)<n>Our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks.
arXiv Detail & Related papers (2025-06-17T17:12:34Z) - Architect of the Bits World: Masked Autoregressive Modeling for Circuit Generation Guided by Truth Table [5.300504429005315]
We propose a novel approach integrating conditional generative models with differentiable architecture search (DAS) for circuit generation.<n>Our approach first introduces CircuitVQ, a circuit tokenizer trained based on our Circuit AutoEncoder.<n>We then develop CircuitAR, a masked autoregressive model leveraging CircuitVQ as the tokenizer.
arXiv Detail & Related papers (2025-02-18T11:13:03Z) - Supervised Learning for Analog and RF Circuit Design: Benchmarks and Comparative Insights [10.354863964933019]
This study explores supervised ML-based approaches for designing circuit parameters from performance specifications across various circuit types.<n>Our results show that simpler circuits, such as low-noise amplifiers, achieve exceptional accuracy with mean relative errors as low as 0.3%.<n>For heterogeneous circuits, our approach achieves an 88% reduction in errors with increased training data, with the receiver achieving a mean relative error as low as 0.23%.
arXiv Detail & Related papers (2025-01-21T02:48:23Z) - Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
A novel adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association ins.
We employ inverse RL (IRL) to automatically learn reward functions without manual tuning.
We show that the proposed MA-AL method outperforms traditional RL approaches, achieving a $14.6%$ improvement in convergence and reward value.
arXiv Detail & Related papers (2024-09-27T13:05:02Z) - Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers [19.13500546022262]
We introduce LSOformer, a novel approach harnessing Autoregressive transformer models and predictive SSL to predict the trajectory of Quality of Results (QoR)<n>LSOformer integrates cross-attention modules to merge insights from circuit graphs and optimization sequences, thereby enhancing prediction accuracy for QoR metrics.
arXiv Detail & Related papers (2024-09-16T18:45:07Z) - CIRCUITSYNTH: Leveraging Large Language Models for Circuit Topology Synthesis [7.131266114437393]
We introduce CIRCUITSYNTH, a novel approach that harnesses LLMs to facilitate the automated synthesis of valid circuit topologies.
Our approach lays the foundation for future research aimed at enhancing circuit efficiency and specifying output voltage.
arXiv Detail & Related papers (2024-06-06T01:59:59Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.