Entity-Augmented Neuroscience Knowledge Retrieval Using Ontology and Semantic Understanding Capability of LLM
- URL: http://arxiv.org/abs/2506.03145v1
- Date: Tue, 03 Jun 2025 17:59:18 GMT
- Title: Entity-Augmented Neuroscience Knowledge Retrieval Using Ontology and Semantic Understanding Capability of LLM
- Authors: Pralaypati Ta, Sriram Venkatesaperumal, Keerthi Ram, Mohanasankar Sivaprakasam,
- Abstract summary: A knowledge graph (KG) can integrate and link knowledge from multiple sources.<n>Existing methods for constructing KGs in neuroscience often rely on labeled data and require domain expertise.<n>This work proposes novel methods for constructing KG from unlabeled large-scale neuroscience research corpus.
- Score: 0.6187270874122919
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neuroscience research publications encompass a vast wealth of knowledge. Accurately retrieving existing information and discovering new insights from this extensive literature is essential for advancing the field. However, when knowledge is dispersed across multiple sources, current state-of-the-art retrieval methods often struggle to extract the necessary information. A knowledge graph (KG) can integrate and link knowledge from multiple sources, but existing methods for constructing KGs in neuroscience often rely on labeled data and require domain expertise. Acquiring large-scale, labeled data for a specialized area like neuroscience presents significant challenges. This work proposes novel methods for constructing KG from unlabeled large-scale neuroscience research corpus utilizing large language models (LLM), neuroscience ontology, and text embeddings. We analyze the semantic relevance of neuroscience text segments identified by LLM for building the knowledge graph. We also introduce an entity-augmented information retrieval algorithm to extract knowledge from the KG. Several experiments were conducted to evaluate the proposed approaches, and the results demonstrate that our methods significantly enhance knowledge discovery from the unlabeled neuroscience research corpus. It achieves an F1 score of 0.84 for entity extraction, and the knowledge obtained from the KG improves answers to over 54% of the questions.
Related papers
- Memorizing is Not Enough: Deep Knowledge Injection Through Reasoning [60.01714908976762]
This paper proposes a four-tier knowledge injection framework that defines the levels of knowledge injection: memorization, retrieval, reasoning, and association.<n>We then explore various knowledge injection scenarios and evaluate the depth of knowledge injection for each scenario on the benchmark.
arXiv Detail & Related papers (2025-04-01T06:59:59Z) - Neural-Symbolic Reasoning over Knowledge Graphs: A Survey from a Query Perspective [55.79507207292647]
Knowledge graph reasoning is pivotal in various domains such as data mining, artificial intelligence, the Web, and social sciences.<n>The rise of Neural AI marks a significant advancement, merging the robustness of deep learning with the precision of symbolic reasoning.<n>The advent of large language models (LLMs) has opened new frontiers in knowledge graph reasoning.
arXiv Detail & Related papers (2024-11-30T18:54:08Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Construction and Application of Materials Knowledge Graph in Multidisciplinary Materials Science via Large Language Model [16.03026839786526]
This article introduces the Materials Knowledge Graph (MKG), which utilizes advanced natural language processing techniques integrated with large language models.<n>MKG categorizes information into comprehensive labels such as Name, Formula, and Application, structured around a meticulously designed ontology.<n>By implementing network-based algorithms, MKG not only facilitates efficient link prediction but also significantly reduces reliance on traditional experimental methods.
arXiv Detail & Related papers (2024-04-03T21:46:14Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - From Large Language Models to Knowledge Graphs for Biomarker Discovery
in Cancer [0.9437165725355702]
A challenging scenarios for artificial intelligence (AI) is using biomedical data to provide diagnosis and treatment recommendations for cancerous conditions.
A large-scale knowledge graph (KG) can be constructed by integrating and extracting facts about semantically interrelated entities and relations.
In this paper, we develop a domain KG to leverage cancer-specific biomarker discovery and interactive QA.
arXiv Detail & Related papers (2023-10-12T14:36:13Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks.
However, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge.
We introduce CONNER, designed to evaluate generated knowledge from six important perspectives.
arXiv Detail & Related papers (2023-10-11T08:22:37Z) - BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph
Construction and Analysis [0.4893345190925178]
We propose an end-to-end approach for knowledge extraction and analysis from biomedical clinical notes.
The proposed framework can successfully extract relevant structured information with high accuracy.
arXiv Detail & Related papers (2023-04-21T14:45:33Z) - A Biomedical Knowledge Graph for Biomarker Discovery in Cancer [1.7860709946876898]
A domain-specific knowledge graph(KG) is an explicit conceptualization of a specific subject-matter domain.
The KG is constructed by integrating cancer-related knowledge and facts from multiple sources.
We listed down some queries and some examples of QA and deducing knowledge based on the KG.
arXiv Detail & Related papers (2023-02-09T16:17:57Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Text to Insight: Accelerating Organic Materials Knowledge Extraction via
Deep Learning [1.2774526936067927]
This study aims to explore knowledge extraction for organic materials.
We built a research dataset composed of 855 annotated and 708,376 unannotated sentences drawn from 92,667 abstracts.
We used named-entity-recognition (NER) with BiLSTM-CNN-CRF deep learning model to automatically extract key knowledge from literature.
arXiv Detail & Related papers (2021-09-27T01:58:35Z) - COVID-19 Literature Knowledge Graph Construction and Drug Repurposing
Report Generation [79.33545724934714]
We have developed a novel and comprehensive knowledge discovery framework, COVID-KG, to extract fine-grained multimedia knowledge elements from scientific literature.
Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence.
arXiv Detail & Related papers (2020-07-01T16:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.