Super-temporal-resolution Photoacoustic Imaging with Dynamic Reconstruction through Implicit Neural Representation in Sparse-view
- URL: http://arxiv.org/abs/2506.03175v1
- Date: Thu, 29 May 2025 06:36:44 GMT
- Title: Super-temporal-resolution Photoacoustic Imaging with Dynamic Reconstruction through Implicit Neural Representation in Sparse-view
- Authors: Youshen Xiao, Yiling Shi, Ruixi Sun, Hongjiang Wei, Fei Gao, Yuyao Zhang,
- Abstract summary: Implicit Neural Representation (INR) has emerged as a powerful deep learning tool for solving inverse problems with sparse data.<n>In this work, we propose an INR-based method to improve dynamic photoacoustic image reconstruction from sparse-views.<n>The proposed INR represents dynamic photoacoustic images as implicit functions and encodes them into a neural network.
- Score: 4.333674832664625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dynamic Photoacoustic Computed Tomography (PACT) is an important imaging technique for monitoring physiological processes, capable of providing high-contrast images of optical absorption at much greater depths than traditional optical imaging methods. However, practical instrumentation and geometric constraints limit the number of acoustic sensors available around the imaging target, leading to sparsity in sensor data. Traditional photoacoustic (PA) image reconstruction methods, when directly applied to sparse PA data, produce severe artifacts. Additionally, these traditional methods do not consider the inter-frame relationships in dynamic imaging. Temporal resolution is crucial for dynamic photoacoustic imaging, which is fundamentally limited by the low repetition rate (e.g., 20 Hz) and high cost of high-power laser technology. Recently, Implicit Neural Representation (INR) has emerged as a powerful deep learning tool for solving inverse problems with sparse data, by characterizing signal properties as continuous functions of their coordinates in an unsupervised manner. In this work, we propose an INR-based method to improve dynamic photoacoustic image reconstruction from sparse-views and enhance temporal resolution, using only spatiotemporal coordinates as input. Specifically, the proposed INR represents dynamic photoacoustic images as implicit functions and encodes them into a neural network. The weights of the network are learned solely from the acquired sparse sensor data, without the need for external training datasets or prior images. Benefiting from the strong implicit continuity regularization provided by INR, as well as explicit regularization for low-rank and sparsity, our proposed method outperforms traditional reconstruction methods under two different sparsity conditions, effectively suppressing artifacts and ensuring image quality.
Related papers
- Enhanced Confocal Laser Scanning Microscopy with Adaptive Physics Informed Deep Autoencoders [0.0]
We present a physics-informed deep learning framework to address limitations in Confocal Laser Scanning Microscopy.<n>The model reconstructs high fidelity images from heavily noisy inputs by using convolutional and transposed convolutional layers.
arXiv Detail & Related papers (2025-01-24T18:32:34Z) - Limited-View Photoacoustic Imaging Reconstruction Via High-quality Self-supervised Neural Representation [4.274771298029378]
We introduce a self-supervised network termed HIgh-quality Self-supervised neural representation (HIS)
HIS tackles the inverse problem of photoacoustic imaging to reconstruct high-quality photoacoustic images from sensor data acquired under limited viewpoints.
Results indicate that the proposed HIS model offers superior image reconstruction quality compared to three commonly used methods for photoacoustic image reconstruction.
arXiv Detail & Related papers (2024-07-04T06:07:54Z) - Enhancing Dynamic CT Image Reconstruction with Neural Fields and Optical Flow [0.0]
We show the benefits of introducing explicit motion regularizers for dynamic inverse problems based on partial differential equations.<n>We also compare neural fields against a grid-based solver and show that the former outperforms the latter in terms of PSNR.
arXiv Detail & Related papers (2024-06-03T13:07:29Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Spatiotemporal implicit neural representation for unsupervised dynamic
MRI reconstruction [11.661657147506519]
Implicit Neuraltruth (INR) has appeared as powerful DL-based tool for solving the inverse problem.
In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data.
The proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks.
arXiv Detail & Related papers (2022-12-31T05:43:21Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - AS-Net: Fast Photoacoustic Reconstruction with Multi-feature Fusion from
Sparse Data [1.7237160821929758]
Photoacoustic imaging is capable of acquiring high contrast images of optical absorption at depths much greater than traditional optical imaging techniques.
In this paper, we employ a novel signal processing method to make sparse PA raw data more suitable for the neural network.
We then propose Attention Steered Network (AS-Net) for PA reconstruction with multi-feature fusion.
arXiv Detail & Related papers (2021-01-22T03:49:30Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.