Lightweight Convolutional Neural Networks for Retinal Disease Classification
- URL: http://arxiv.org/abs/2506.03186v1
- Date: Fri, 30 May 2025 12:36:45 GMT
- Title: Lightweight Convolutional Neural Networks for Retinal Disease Classification
- Authors: Duaa Kareem Qasim, Sabah Abdulazeez Jebur, Lafta Raheem Ali, Abdul Jalil M. Khalaf, Abir Jaafar Hussain,
- Abstract summary: This paper employed two lightweight and efficient Convolution Neural Network architectures, MobileNet and NASNetMobile, for the classification of Normal, DR, and MH retinal images.<n>The experimental results demonstrate that MobileNetV2 achieved the highest accuracy of 90.8%, outperforming NASNetMobile, which achieved 89.5% accuracy.
- Score: 0.20971479389679337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retinal diseases such as Diabetic Retinopathy (DR) and Macular Hole (MH) significantly impact vision and affect millions worldwide. Early detection is crucial, as DR, a complication of diabetes, damages retinal blood vessels, potentially leading to blindness, while MH disrupts central vision, affecting tasks like reading and facial recognition. This paper employed two lightweight and efficient Convolution Neural Network architectures, MobileNet and NASNetMobile, for the classification of Normal, DR, and MH retinal images. The models were trained on the RFMiD dataset, consisting of 3,200 fundus images, after undergoing preprocessing steps such as resizing, normalization, and augmentation. To address data scarcity, this study leveraged transfer learning and data augmentation techniques, enhancing model generalization and performance. The experimental results demonstrate that MobileNetV2 achieved the highest accuracy of 90.8%, outperforming NASNetMobile, which achieved 89.5% accuracy. These findings highlight the effectiveness of CNNs in retinal disease classification, providing a foundation for AI-assisted ophthalmic diagnosis and early intervention.
Related papers
- Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures [0.0]
Diabetic Retinopathy DR is a severe complication of diabetes. Damaged or abnormal blood vessels can cause loss of vision.<n>The need for massive screening of a large population of diabetic patients has generated an interest in a computer-aided fully automatic diagnosis of DR.<n>Deep learning frameworks, particularly convolutional neural networks CNNs, have shown great interest and promise in detecting DR by analyzing retinal images.
arXiv Detail & Related papers (2024-11-02T14:02:45Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.<n>This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - InceptionCaps: A Performant Glaucoma Classification Model for
Data-scarce Environment [0.0]
glaucoma is an irreversible ocular disease and is the second leading cause of visual disability worldwide.
This work reviews existing state of the art models and proposes InceptionCaps, a novel capsule network (CapsNet) based deep learning model having pre-trained InceptionV3 as its convolution base, for automatic glaucoma classification.
InceptionCaps achieved an accuracy of 0.956, specificity of 0.96, and AUC of 0.9556, which surpasses several state-of-the-art deep learning model performances on the RIM-ONE v2 dataset.
arXiv Detail & Related papers (2023-11-24T11:58:11Z) - Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced
Feature Extraction Processing [0.0]
This research aims to improve diabetic retinopathy diagnosis by developing an enhanced deep learning model for timely DR identification.
The proposed model will detect various lesions from retinal images in the early stages.
arXiv Detail & Related papers (2023-05-08T14:17:33Z) - Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
Recent advances have shown that the convolutional Neural Network (CNN) architectures can be used to design a Computer Aided Diagnostic (CAD) System for breast cancer detection.
We consider some contemporary CNN models for binary classification of breast histopathology images.
We have validated the trained CNN networks on a publicly available BreaKHis dataset, for 200x and 400x magnified histopathology images.
arXiv Detail & Related papers (2022-01-04T03:09:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Predictive Analysis of Diabetic Retinopathy with Transfer Learning [0.0]
This paper studies the performance of CNN architectures for Diabetic Retinopathy Classification with the help of Transfer Learning.
The results indicate that Transfer Learning with ImageNet weights using VGG 16 model demonstrates the best classification performance with the best Accuracy of 95%.
arXiv Detail & Related papers (2020-11-08T18:54:57Z) - RetiNerveNet: Using Recursive Deep Learning to Estimate Pointwise 24-2
Visual Field Data based on Retinal Structure [109.33721060718392]
glaucoma is the leading cause of irreversible blindness in the world, affecting over 70 million people.
Due to the Standard Automated Perimetry (SAP) test's innate difficulty and its high test-retest variability, we propose the RetiNerveNet.
arXiv Detail & Related papers (2020-10-15T03:09:08Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1-D convolutional neural network models are trained for classification of short-range sequences.
Model provides prediction with high average accuracy on a hold out test set.
arXiv Detail & Related papers (2020-02-06T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.