OpenCarbon: A Contrastive Learning-based Cross-Modality Neural Approach for High-Resolution Carbon Emission Prediction Using Open Data
- URL: http://arxiv.org/abs/2506.03224v1
- Date: Tue, 03 Jun 2025 10:12:10 GMT
- Title: OpenCarbon: A Contrastive Learning-based Cross-Modality Neural Approach for High-Resolution Carbon Emission Prediction Using Open Data
- Authors: Jinwei Zeng, Yu Liu, Guozhen Zhang, Jingtao Ding, Yuming Lin, Jian Yuan, Yong Li,
- Abstract summary: Accurately estimating high-resolution carbon emissions is crucial for effective emission governance and mitigation planning.<n>Open data-based prediction model is developed and trained, it can easily infer emissions for new areas based on available open data.<n>Our model, OpenCarbon, features two major designs that target the challenges: the intertwined and implicit effects of various functionalities on carbon emissions, and the complex spatial contiguity correlations.
- Score: 17.181659184917358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately estimating high-resolution carbon emissions is crucial for effective emission governance and mitigation planning. While conventional methods for precise carbon accounting are hindered by substantial data collection efforts, the rise of open data and advanced learning techniques offers a promising solution. Once an open data-based prediction model is developed and trained, it can easily infer emissions for new areas based on available open data. To address this, we incorporate two modalities of open data, satellite images and point-of-interest (POI) data, to predict high-resolution urban carbon emissions, with satellite images providing macroscopic and static and POI data offering fine-grained and relatively dynamic functionality information. However, estimating high-resolution carbon emissions presents two significant challenges: the intertwined and implicit effects of various functionalities on carbon emissions, and the complex spatial contiguity correlations that give rise to the agglomeration effect. Our model, OpenCarbon, features two major designs that target the challenges: a cross-modality information extraction and fusion module to extract complementary functionality information from two modules and model their interactions, and a neighborhood-informed aggregation module to capture the spatial contiguity correlations. Extensive experiments demonstrate our model's superiority, with a significant performance gain of 26.6\% on R2. Further generalizability tests and case studies also show OpenCarbon's capacity to capture the intrinsic relation between urban functionalities and carbon emissions, validating its potential to empower efficient carbon governance and targeted carbon mitigation planning. Codes and data are available: https://github.com/JinweiZzz/OpenCarbon.
Related papers
- Diffusion-Modeled Reinforcement Learning for Carbon and Risk-Aware Microgrid Optimization [48.70916202664808]
DiffCarl is a diffusion-modeled carbon- and risk-aware reinforcement learning algorithm for intelligent operation of multi-microgrid systems.<n>It outperforms classic algorithms and state-of-the-art DRL solutions, with 2.3-30.1% lower operational cost.<n>It also achieves 28.7% lower carbon emissions than those of its carbon-unaware variant and reduces performance variability.
arXiv Detail & Related papers (2025-07-22T03:27:07Z) - Improving Power Plant CO2 Emission Estimation with Deep Learning and Satellite/Simulated Data [0.0]
CO2 emissions from power plants, as significant super emitters, substantially contribute to global warming.<n>This study addresses challenges by expanding the available dataset through the integration of NO2 data from Sentinel-5P, generating continuous XCO2 maps, and incorporating real satellite observations from OCO-2/3 for over 71 power plants in data-scarce regions.
arXiv Detail & Related papers (2025-02-04T08:05:15Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
We propose ScaleQuest, a novel, scalable, and cost-effective data synthesis method.<n>By generating diverse questions from scratch, we produce a dataset of 1 million problem-solution pairs.<n>Our experiments demonstrate that models trained on our data outperform existing open-source datasets.
arXiv Detail & Related papers (2024-10-24T12:42:04Z) - Enhancing Carbon Emission Reduction Strategies using OCO and ICOS data [40.572754656757475]
We propose a methodology to enhance local CO2 monitoring by integrating satellite data from the Orbiting Carbon Observatories (OCO-2 and OCO-3) with ground level observations from the Integrated Carbon Observation System (ICOS) and weather data from the ECMWF Reanalysis v5 (ERA5)
We employ weighted K-nearest neighbor (KNN) with machine learning models to predict ground level CO2 from satellite measurements, achieving a Root Mean Squared Error of 3.92 ppm.
arXiv Detail & Related papers (2024-10-05T21:23:58Z) - CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling [9.05128569357374]
We present CarbonSense, the first machine learning-ready dataset for data-driven carbon flux modelling.<n>Our experiments illustrate the potential gains that multimodal deep learning techniques can bring to this domain.
arXiv Detail & Related papers (2024-06-07T13:47:40Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Estimating On-road Transportation Carbon Emissions from Open Data of
Road Network and Origin-destination Flow Data [16.21501733814205]
We build a hierarchical graph learning method for on-road carbon emission estimation (HENCE)
Experiments on two large-scale real-world datasets demonstrate HENCE's effectiveness and superiority with R-squared exceeding 0.75 and outperforming baselines by 9.60% on average.
arXiv Detail & Related papers (2024-02-07T13:51:33Z) - CAFE: Carbon-Aware Federated Learning in Geographically Distributed Data
Centers [18.54380015603228]
Training large-scale artificial intelligence (AI) models demands significant computational power and energy, leading to increased carbon footprint with potential environmental repercussions.
This paper delves into the challenges of training AI models across geographically distributed (geo-distributed) data centers, emphasizing the balance between learning performance and carbon footprint.
We propose a new framework called CAFE (short for Carbon-Aware Federated Learning) to optimize training within a fixed carbon footprint budget.
arXiv Detail & Related papers (2023-11-06T23:59:22Z) - Machine Guided Discovery of Novel Carbon Capture Solvents [48.7576911714538]
Machine learning offers a promising method for reducing the time and resource burdens of materials development.
We have developed an end-to-end "discovery cycle" to select new aqueous amines compatible with the commercially viable acid gas scrubbing carbon capture.
The prediction process shows 60% accuracy against experiment for both material parameters and 80% for a single parameter on an external test set.
arXiv Detail & Related papers (2023-03-24T18:32:38Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
We quantitatively evaluate the effect of attention and Knowledge Graph on bag-level relation extraction (RE)
We find that (1) higher attention accuracy may lead to worse performance as it may harm the model's ability to extract entity mention features; (2) the performance of attention is largely influenced by various noise distribution patterns; and (3) KG-enhanced attention indeed improves RE performance, while not through enhanced attention but by incorporating entity prior.
arXiv Detail & Related papers (2021-07-26T09:38:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.