Evaluating Large Language Models for Zero-Shot Disease Labeling in CT Radiology Reports Across Organ Systems
- URL: http://arxiv.org/abs/2506.03259v1
- Date: Tue, 03 Jun 2025 18:00:08 GMT
- Title: Evaluating Large Language Models for Zero-Shot Disease Labeling in CT Radiology Reports Across Organ Systems
- Authors: Michael E. Garcia-Alcoser, Mobina GhojoghNejad, Fakrul Islam Tushar, David Kim, Kyle J. Lafata, Geoffrey D. Rubin, Joseph Y. Lo,
- Abstract summary: We compare a rule-based algorithm (RBA), RadBERT, and three lightweight open-weight LLMs for multi-disease labeling of chest, abdomen, and pelvis CT reports.<n>Performance was evaluated using Cohen's Kappa and micro/macro-averaged F1 scores.
- Score: 1.1373722549440357
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Purpose: This study aims to evaluate the effectiveness of large language models (LLMs) in automating disease annotation of CT radiology reports. We compare a rule-based algorithm (RBA), RadBERT, and three lightweight open-weight LLMs for multi-disease labeling of chest, abdomen, and pelvis (CAP) CT reports. Materials and Methods: This retrospective study analyzed 40,833 CT reports from 29,540 patients, with 1,789 CAP reports manually annotated across three organ systems. External validation was conducted using the CT-RATE dataset. Three open-weight LLMs were tested with zero-shot prompting. Performance was evaluated using Cohen's Kappa and micro/macro-averaged F1 scores. Results: In 12,197 Duke CAP reports from 8,854 patients, Llama-3.1 8B and Gemma-3 27B showed the highest agreement ($\kappa$ median: 0.87). On the manually annotated set, Gemma-3 27B achieved the top macro-F1 (0.82), followed by Llama-3.1 8B (0.79), while the RBA scored lowest (0.64). On the CT-RATE dataset (lungs/pleura only), Llama-3.1 8B performed best (0.91), with Gemma-3 27B close behind (0.89). Performance differences were mainly due to differing labeling practices, especially for lung atelectasis. Conclusion: Lightweight LLMs outperform rule-based methods for CT report annotation and generalize across organ systems with zero-shot prompting. However, binary labels alone cannot capture the full nuance of report language. LLMs can provide a flexible, efficient solution aligned with clinical judgment and user needs.
Related papers
- Leveraging Fine-Tuned Large Language Models for Interpretable Pancreatic Cystic Lesion Feature Extraction and Risk Categorization [9.840625513935343]
Manual extraction of pancreatic cystic lesion (PCL) features from radiology reports is labor-intensive.<n>To develop and evaluate large language models (LLMs) that automatically extract PCL features from MRI/CT reports.
arXiv Detail & Related papers (2025-07-26T15:02:32Z) - Comparative analysis of privacy-preserving open-source LLMs regarding extraction of diagnostic information from clinical CMR imaging reports [0.49998148477760973]
We evaluated nine open-source Large Language Models (LLMs) on their ability to identify diagnoses and classify patients into various cardiac diagnostic categories.<n>Google's Gemma2 model achieved the highest average F1 score of 0.98, followed by Qwen2.5:32B and DeepseekR1-32B with F1 scores of 0.96 and 0.95, respectively.
arXiv Detail & Related papers (2025-05-29T11:25:10Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - ELM: Ensemble of Language Models for Predicting Tumor Group from Pathology Reports [2.0447192404937353]
Population-based cancer registries (PBCRs) face a significant bottleneck in manually extracting data from unstructured pathology reports.<n>We introduce ELM, a novel ensemble-based approach leveraging both small language models (SLMs) and large language models (LLMs)<n>ELM achieves an average precision and recall of 0.94, outperforming single-model and ensemble-without-LLM approaches.
arXiv Detail & Related papers (2025-03-24T19:21:53Z) - Utility of Multimodal Large Language Models in Analyzing Chest X-ray with Incomplete Contextual Information [0.8602553195689513]
Large language models (LLMs) are gaining use in clinical settings, but their performance can suffer from incomplete radiology reports.
We tested whether multimodal LLMs (using text and images) could improve accuracy and understanding in chest radiography reports.
arXiv Detail & Related papers (2024-09-20T01:42:53Z) - Towards a Holistic Framework for Multimodal Large Language Models in Three-dimensional Brain CT Report Generation [42.06416052431378]
2D radiology captioning is incompetent to reflect the real-world diagnostic challenge in the volumetric 3D anatomy.
We collected an 18,885 text-scan pairs 3D-BrainCT dataset and applied clinical visual instruction tuning to train BrainGPT models to generate radiology-adherent 3D brain CT reports.
Our work embodies a holistic framework that showcased the first-hand experience of curating a 3D brain CT dataset, fine-tuning anatomy-sensible language models, and proposing robust radiology evaluation metrics.
arXiv Detail & Related papers (2024-07-02T12:58:35Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
To investigate chest radiograph (CXR) classification performance of vision transformers (ViT) and interpretability of attention-based saliency.
ViTs were fine-tuned for lung disease classification using four public data sets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData.
ViTs had comparable CXR classification AUCs compared with state-of-the-art CNNs.
arXiv Detail & Related papers (2023-03-03T12:05:41Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
This challenge includes 10,091 patch-level annotations and over 130 million labeled pixels.
First place team achieved mIoU of 0.8413 (tumor: 0.8389, stroma: 0.7931, normal: 0.8919)
arXiv Detail & Related papers (2022-04-13T15:27:05Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
We curated and analyzed a chest computed tomography (CT) data set of 36,316 volumes from 19,993 unique patients.
We developed a rule-based method for automatically extracting abnormality labels from free-text radiology reports.
We also developed a model for multi-organ, multi-disease classification of chest CT volumes.
arXiv Detail & Related papers (2020-02-12T00:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.