Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV
- URL: http://arxiv.org/abs/2505.17929v1
- Date: Fri, 23 May 2025 14:06:42 GMT
- Title: Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV
- Authors: Alexander Gabitashvili, Philipp Kellmeyer,
- Abstract summary: This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Intensive care unit (ICU) is a crucial hospital department that handles life-threatening cases. Nowadays machine learning (ML) is being leveraged in healthcare ubiquitously. In recent years, management of ICU became one of the most significant parts of the hospital functionality (largely but not only due to the worldwide COVID-19 pandemic). This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset. The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer). Given that LOS prediction is often framed as a classification task, this study categorizes LOS into three groups: less than two days, less than a week, and a week or more. As the first ML-based approach targeting LOS prediction for neurological disorder patients, this study does not aim to outperform existing methods but rather to assess their effectiveness in this specific context. The findings provide insights into the applicability of ML techniques for improving ICU resource management and patient care. According to the results, Random Forest model proved to outperform others on static, achieving an accuracy of 0.68, a precision of 0.68, a recall of 0.68, and F1-score of 0.67. While BERT model outperformed LSTM model on time-series data with an accuracy of 0.80, a precision of 0.80, a recall of 0.80 and F1-score 0.80.
Related papers
- SurgeryLSTM: A Time-Aware Neural Model for Accurate and Explainable Length of Stay Prediction After Spine Surgery [44.119171920037196]
We develop and evaluate machine learning (ML) models for predicting length of stay (LOS) in elective spine surgery.<n>We compare traditional ML models with our developed model, SurgeryLSTM, a masked bidirectional long short-term memory (BiLSTM) with an attention.<n>Performance was evaluated using the coefficient of determination (R2) and key predictors were identified using explainable AI.
arXiv Detail & Related papers (2025-07-15T01:18:28Z) - Leveraging Large Language Models to Enhance Machine Learning Interpretability and Predictive Performance: A Case Study on Emergency Department Returns for Mental Health Patients [2.3769374446083735]
Emergency department (ED) returns for mental health conditions pose a major healthcare burden, with 24-27% of patients returning within 30 days.<n>To assess whether integrating large language models (LLMs) with machine learning improves predictive accuracy and clinical interpretability of ED mental health return risk models.
arXiv Detail & Related papers (2025-01-21T15:41:20Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
Sepsis is a severe condition responsible for many deaths in the United States and worldwide.<n>Previous studies employing machine learning faced limitations in feature selection and model interpretability.<n>This research aimed to develop an interpretable and accurate machine learning model to predict in-hospital sepsis mortality.
arXiv Detail & Related papers (2024-08-03T00:28:25Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Performance of externally validated machine learning models based on
histopathology images for the diagnosis, classification, prognosis, or
treatment outcome prediction in female breast cancer: A systematic review [0.5792122879054292]
externally validated machine learning models for diagnosis, classification, prognosis, or treatment outcome prediction in female breast cancer.
Three studies externally validated ML models for diagnosis, 4 for classification, 2 for prognosis, and 1 for both classification and prognosis.
Most studies used Convolutional Neural Networks and one used logistic regression algorithms.
arXiv Detail & Related papers (2023-12-09T18:27:56Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
arXiv Detail & Related papers (2022-11-01T14:12:58Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
We develop various AI models to predict hospitalization on a large (over 110$k$) cohort of COVID-19 positive-tested US patients.
Despite high data unbalance, the models reach average precision 0.96-0.98 (0.75-0.85), recall 0.96-0.98 (0.74-0.85), and $F_score 0.97-0.98 (0.79-0.83) on the non-hospitalized (or hospitalized) class.
arXiv Detail & Related papers (2021-10-28T10:23:38Z) - An Interpretable Web-based Glioblastoma Multiforme Prognosis Prediction
Tool using Random Forest Model [1.1024591739346292]
We propose predictive models that estimate GBM patients' health status of one-year after treatments.
We used total of 467 GBM patients' clinical profile consists of 13 features and two follow-up dates.
Our machine learning models suggest that the top three prognostic factors for GBM patient survival were MGMT gene promoter, the extent of resection, and age.
arXiv Detail & Related papers (2021-08-30T07:56:34Z) - All Data Inclusive, Deep Learning Models to Predict Critical Events in
the Medical Information Mart for Intensive Care III Database (MIMIC III) [0.0]
This study was performed using 42,818 hospital admissions involving 35,348 patients.
Over 75 million events across multiple data sources were processed, resulting in over 355 million tokens.
It is possible to predict in-hospital mortality with much better confidence and higher reliability from models built using all sources of data.
arXiv Detail & Related papers (2020-09-02T22:12:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.