Theory of Angle Resolved Photoemission Spectroscopy of Altermagnetic Mott Insulators
- URL: http://arxiv.org/abs/2506.03263v1
- Date: Tue, 03 Jun 2025 18:00:14 GMT
- Title: Theory of Angle Resolved Photoemission Spectroscopy of Altermagnetic Mott Insulators
- Authors: Lorenzo Lanzini, Purnendu Das, Michael Knap,
- Abstract summary: Altermagnetism has emerged as an unconventional form of collinear magnetism with spatial rotational symmetries.<n>We develop a theory for the Angle Resolved Photoemission Spectroscopy (ARPES) response of altermagnetic Mott insulators.<n>Our work paves the way for a systematic study of doping effects and correlation phenomena in altermagnetic Mott insulators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Altermagnetism has emerged as an unconventional form of collinear magnetism with spatial rotational symmetries, that give rise to strongly spin-split bands despite of an underlying fully-compensated antiferromagnetic order. Here, we develop a theory for the Angle Resolved Photoemission Spectroscopy (ARPES) response of altermagnetic Mott insulators. Crucially, the spectrum does not simply reflect the non-interacting band structure, but instead a magnetic polaron is formed at low energies, that can be interpreted as a spinon-holon bound state. We develop a spinon-holon parton theory and predict a renormalized bandwidth that we confirm by tensor network simulations. We analyze the characteristic spin-split spectrum and identify a spin-dependent spectral weight of the magnetic polaron, resulting from the altermagnetic symmetry. Our work paves the way for a systematic study of doping effects and correlation phenomena in altermagnetic Mott insulators.
Related papers
- Quantum Geometry of Altermagnetic Magnons Probed by Light [0.0]
We identify bicircular light as a smoking-gun optical probe for chiral altermagnetic magnons.<n>We show that in $d$-wave altermagnets, under a canting magnetic field, the altermagnetic magnons realize a nontrivial quantum geometry.
arXiv Detail & Related papers (2025-08-04T18:00:03Z) - Observation of Magnetic Devil's Staircase-Like Behavior in Quasiperiodic Qubit Lattices [55.2480439325792]
devil's staircase (DS) phenomenon is a fractal response of magnetization to external fields.<n>We uncover a wealth of abrupt magnetic transitions driven by increasing external magnetic fields within a simple yet effective Ising-model framework.<n>Our results challenge the prevailing view that DS behavior is limited to periodic systems.
arXiv Detail & Related papers (2025-07-24T21:39:06Z) - Magnetic polarons beyond linear spin-wave theory: Mesons dressed by
magnons [0.0]
We develop a quantitative theoretical formalism to describe magnetic polarons in the strong coupling regime.
We construct an effective Hamiltonian with weak coupling to the spin-wave excitations in the background.
Our work paves the way for exploring magnetic polarons out-of equilibrium or in frustrated systems.
arXiv Detail & Related papers (2024-01-31T19:14:17Z) - Realizing Altermagnetism in Fermi-Hubbard Models with Ultracold Atoms [0.0]
We show how a d-wave altermagnetic phase can be realized with ultracold fermionic atoms in optical lattices.
One of the defining characteristics of altermagnetism, the anisotropic spin transport, can be probed with trap-expansion experiments.
arXiv Detail & Related papers (2023-12-15T19:01:20Z) - Revealing Emergent Magnetic Charge in an Antiferromagnet with Diamond
Quantum Magnetometry [42.60602838972598]
Whirling topological textures play a key role in exotic phases of magnetic materials and offer promise for logic and memory applications.
In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to ferromagnetic counterparts.
One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry.
arXiv Detail & Related papers (2023-03-21T18:30:20Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Colliding-probe bi-atomic magnetometers via energy circulation: Breaking
symmetry-enforced magneto-optical rotation blockade [0.0]
We show a propagation growth blockade in single probe based magnetic field sensing schemes.
We show, both experimentally and theoretically, a colliding probe bi-atomic magnetometer that lifts this NMORE blockade.
The new technique may have broad applications in photon gates and switching operations.
arXiv Detail & Related papers (2022-02-25T15:45:31Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Rotational Resonances and Regge Trajectories in Lightly Doped
Antiferromagnets [0.0]
We numerically identify long-lived rotational resonances at low doping, which directly reveal the microscopic structure of spinon-chargon bound states.
Our findings suggest that multi-photon spectroscopy experiments should provide new insights into emergent universal features of strongly correlated electron systems.
arXiv Detail & Related papers (2021-01-22T18:59:35Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.