The Impact of On-Policy Parallelized Data Collection on Deep Reinforcement Learning Networks
- URL: http://arxiv.org/abs/2506.03404v1
- Date: Tue, 03 Jun 2025 21:27:17 GMT
- Title: The Impact of On-Policy Parallelized Data Collection on Deep Reinforcement Learning Networks
- Authors: Walter Mayor, Johan Obando-Ceron, Aaron Courville, Pablo Samuel Castro,
- Abstract summary: parallel actors for data collection has been an effective technique used in reinforcement learning algorithms.<n>We conduct an empirical analysis of trade-offs on PPO, one of the most popular RL algorithms that uses parallel actors.<n>Our analyses indicate that larger dataset sizes can increase final performance across a variety of settings.
- Score: 12.82803159923457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of parallel actors for data collection has been an effective technique used in reinforcement learning (RL) algorithms. The manner in which data is collected in these algorithms, controlled via the number of parallel environments and the rollout length, induces a form of bias-variance trade-off; the number of training passes over the collected data, on the other hand, must strike a balance between sample efficiency and overfitting. We conduct an empirical analysis of these trade-offs on PPO, one of the most popular RL algorithms that uses parallel actors, and establish connections to network plasticity and, more generally, optimization stability. We examine its impact on network architectures, as well as the hyper-parameter sensitivity when scaling data. Our analyses indicate that larger dataset sizes can increase final performance across a variety of settings, and that scaling parallel environments is more effective than increasing rollout lengths. These findings highlight the critical role of data collection strategies in improving agent performance.
Related papers
- Scaling DRL for Decision Making: A Survey on Data, Network, and Training Budget Strategies [66.83950068218033]
Scaling Laws demonstrate that scaling model parameters and training data enhances learning performance.<n>Despite its potential to improve performance, the integration of scaling laws into deep reinforcement learning has not been fully realized.<n>This review addresses this gap by systematically analyzing scaling strategies in three dimensions: data, network, and training budget.
arXiv Detail & Related papers (2025-08-05T08:03:12Z) - Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.<n>We introduce novel algorithms for dynamic, instance-level data reweighting.<n>Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning [1.0709300917082865]
We introduce a distribution-aware flow matching approach to generate synthetic unstructured data for few-shot reinforcement learning.<n>Our approach addresses key challenges in traditional model-based RL, such as overfitting and data correlation.<n>Results demonstrate that our method achieves stable convergence in terms of maximum Q-value while enhancing frame rates by 30% in the initial timestamps.
arXiv Detail & Related papers (2024-09-21T15:50:59Z) - Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
We propose a framework that enhances PPO algorithms by incorporating a diffusion model to generate high-quality virtual trajectories for offline datasets.<n>Our contributions are threefold: we explore the potential of diffusion models in RL, particularly for offline datasets, extend the application of online RL to offline environments, and experimentally validate the performance improvements of PPO with diffusion models.
arXiv Detail & Related papers (2024-09-02T19:10:32Z) - Optimal Parallelization Strategies for Active Flow Control in Deep Reinforcement Learning-Based Computational Fluid Dynamics [29.49913315698914]
Deep Reinforcement Learning (DRL) has emerged as a promising approach for handling highly dynamic and nonlinear Active Flow Control (AFC) problems.
This study focuses on optimizing DRL-based algorithms in parallel settings.
We achieve a significant boost in parallel efficiency from around 49% to approximately 78%.
arXiv Detail & Related papers (2024-02-18T09:07:30Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.