論文の概要: Target Semantics Clustering via Text Representations for Robust Universal Domain Adaptation
- arxiv url: http://arxiv.org/abs/2506.03521v1
- Date: Wed, 04 Jun 2025 03:11:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.124019
- Title: Target Semantics Clustering via Text Representations for Robust Universal Domain Adaptation
- Title(参考訳): ロバストユニバーサルドメイン適応のためのテキスト表現によるターゲットセマンティクスクラスタリング
- Authors: Weinan He, Zilei Wang, Yixin Zhang,
- Abstract要約: Universal Domain Adaptation (UniDA)は、ドメインシフトと未知のカテゴリシフトの両方の下で、ソースドメインの知識をターゲットドメインに転送することに焦点を当てている。
現在の手法では、制約のない連続画像表現空間からターゲット領域意味論センターを得るのが一般的である。
本稿では,視覚言語モデルに基づく意味的意味的かつ離散的なテキスト表現空間のセマンティックセンターを探索する。
- 参考スコア(独自算出の注目度): 37.61604558855609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universal Domain Adaptation (UniDA) focuses on transferring source domain knowledge to the target domain under both domain shift and unknown category shift. Its main challenge lies in identifying common class samples and aligning them. Current methods typically obtain target domain semantics centers from an unconstrained continuous image representation space. Due to domain shift and the unknown number of clusters, these centers often result in complex and less robust alignment algorithm. In this paper, based on vision-language models, we search for semantic centers in a semantically meaningful and discrete text representation space. The constrained space ensures almost no domain bias and appropriate semantic granularity for these centers, enabling a simple and robust adaptation algorithm. Specifically, we propose TArget Semantics Clustering (TASC) via Text Representations, which leverages information maximization as a unified objective and involves two stages. First, with the frozen encoders, a greedy search-based framework is used to search for an optimal set of text embeddings to represent target semantics. Second, with the search results fixed, encoders are refined based on gradient descent, simultaneously achieving robust domain alignment and private class clustering. Additionally, we propose Universal Maximum Similarity (UniMS), a scoring function tailored for detecting open-set samples in UniDA. Experimentally, we evaluate the universality of UniDA algorithms under four category shift scenarios. Extensive experiments on four benchmarks demonstrate the effectiveness and robustness of our method, which has achieved state-of-the-art performance.
- Abstract(参考訳): Universal Domain Adaptation (UniDA)は、ドメインシフトと未知のカテゴリシフトの両方の下で、ソースドメインの知識をターゲットドメインに転送することに焦点を当てている。
その主な課題は、共通クラスサンプルを特定し、それらを整列させることである。
現在の手法では、制約のない連続画像表現空間からターゲット領域意味論センターを得るのが一般的である。
ドメインシフトと未知数のクラスタのため、これらの中心はしばしば複雑でロバストなアライメントアルゴリズムをもたらす。
本稿では,視覚言語モデルに基づく意味的意味的かつ離散的なテキスト表現空間のセマンティックセンターを探索する。
制約付き空間は、これらの中心に対するドメインバイアスと適切な意味的粒度をほとんどなくし、単純で堅牢な適応アルゴリズムを可能にする。
具体的には,テキスト表現によるTArget Semantics Clustering (TASC)を提案する。
まず,凍結エンコーダを用いて,対象のセマンティクスを表現するためのテキスト埋め込みを最適に検索する。
第二に、検索結果を固定すると、エンコーダは勾配降下に基づいて洗練され、同時に堅牢なドメインアライメントとプライベートクラスクラスタリングを実現する。
さらに,Universal Maximum similarity (UniMS)を提案する。
実験により,4つのカテゴリシフトシナリオでUniDAアルゴリズムの普遍性を評価する。
提案手法の有効性とロバスト性を示す4つのベンチマーク実験を行った。
関連論文リスト
- Exploring Semantic Consistency and Style Diversity for Domain Generalized Semantic Segmentation [4.850207292777464]
ドメイン一般化セマンティック(Domain Generalized Semantic)は、未知のターゲットドメイン間のセマンティックセグメンテーションの一般化を強化することを目的としている。
本稿では,セマンティック一貫性予測とスタイル多様性の一般化のためのSCSDを紹介する。
SCSDは既存の最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-12-16T18:20:06Z) - Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
斬新なクラスとドメインの両方が存在するようなオープンワールドシナリオでは、理想的なセグメンテーションモデルは安全のために異常なクラスを検出する必要がある。
既存の方法はドメインレベルとセマンティックレベルの分散シフトを区別するのに苦労することが多い。
論文 参考訳(メタデータ) (2024-11-06T11:03:02Z) - Multimodal Unsupervised Domain Generalization by Retrieving Across the Modality Gap [11.96884248631201]
教師なし領域一般化問題のマルチモーダル版に取り組む。
我々のフレームワークは、ソースデータセットを共同視覚言語空間で正確かつ効率的に検索できるという前提に依存している。
我々は,テキストクエリと粗い量子化に使用される画像セントロイドとの距離が大きいため,近接した近接探索が低リコールに悩まされていることを理論的に示す。
論文 参考訳(メタデータ) (2024-02-06T21:29:37Z) - Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
分類領域アライメントを実現するために,G-ABC (Adaptive Betweenness Clustering) と呼ばれる新しいSSDA手法を提案する。
提案手法は従来のSSDA手法よりも優れており,提案したG-ABCアルゴリズムの優位性を示している。
論文 参考訳(メタデータ) (2024-01-21T09:57:56Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
ドメイン適応(DA)は、知識をラベルの豊富なソースドメインから関連するがラベルの少ないターゲットドメインに転送することを目的としている。
低信頼度サンプルの処理による新しいコントラスト学習法を提案する。
提案手法を教師なしと半教師付きの両方のDA設定で評価する。
論文 参考訳(メタデータ) (2022-02-06T15:45:45Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、完全にラベル付けされたソースドメインから異なるラベル付けされていないターゲットドメインに学習した知識を転送することを目的としている。
対照的な自己教師型学習に基づいて、トレーニングとテストセット間のドメインの相違を低減するために、機能を整列させます。
論文 参考訳(メタデータ) (2021-06-10T06:32:30Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
本稿では,カテゴリ間の相関を同時に利用し,各カテゴリ毎のセントロイドを整列させるために,aSimultaneous Semantic Alignment Network (SSAN)を提案する。
対象の擬似ラベルを利用することで、各カテゴリの特徴表現を整列させるために、ロバストな三重項中心のアライメント機構を明示的に適用する。
テキスト・ツー・イメージ、画像・画像・テキスト・ツー・テキストにわたる様々なHDAタスクの実験は、最先端のHDA手法に対するSSANの優位性を検証することに成功した。
論文 参考訳(メタデータ) (2020-08-04T16:20:37Z) - Classes Matter: A Fine-grained Adversarial Approach to Cross-domain
Semantic Segmentation [95.10255219396109]
クラスレベルの特徴アライメントのための微粒な逆学習戦略を提案する。
ドメイン区別器として機能するだけでなく、クラスレベルでドメインを区別する、きめ細かいドメイン識別器を採用しています。
CCD (Class Center Distance) を用いた解析により, 粒度の細かい対角戦略により, クラスレベルのアライメントが向上することが確認された。
論文 参考訳(メタデータ) (2020-07-17T20:50:59Z) - Contextual-Relation Consistent Domain Adaptation for Semantic
Segmentation [44.19436340246248]
本稿では,革新的局所文脈相関整合ドメイン適応手法を提案する。
グローバルレベルのアライメントにおいて、地域レベルのコンピテンシーを達成することを目的としている。
実験では, 最先端手法と比較して, セグメンテーション性能が優れていることを示した。
論文 参考訳(メタデータ) (2020-07-05T19:00:46Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
このタスクの重要な課題は、ソースとターゲットドメイン間のデータ分散の相違を緩和する方法である。
本稿では,グローバルな視点とローカルな視点の両方から分布の整合性を促進できるASS(Alleviating Semantic-level Shift)を提案する。
GTA5、Cityscapes、Synthia、Cityscapesの2つのドメイン適応タスクにASSを適用します。
論文 参考訳(メタデータ) (2020-04-02T03:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。