Debate, Reflect, and Distill: Multi-Agent Feedback with Tree-Structured Preference Optimization for Efficient Language Model Enhancement
- URL: http://arxiv.org/abs/2506.03541v1
- Date: Wed, 04 Jun 2025 03:52:20 GMT
- Title: Debate, Reflect, and Distill: Multi-Agent Feedback with Tree-Structured Preference Optimization for Efficient Language Model Enhancement
- Authors: Xiaofeng Zhou, Heyan Huang, Lizi Liao,
- Abstract summary: Large Language Models (LLMs) continue to set new standards in knowledge-intensive and complex reasoning tasks.<n>Current techniques, such as static knowledge distillation, resource-intensive reinforcement learning from human feedback, or limited self-reflection to yield substantial and lasting performance gains.<n>We present a novel Reflect and Debate (D&R) framework that orchestrates multi-turn debates between smaller models and stronger teacher models, eliciting actionable feedback.
- Score: 43.532921045069365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) continue to set new standards in knowledge-intensive and complex reasoning tasks, yet their high computational demands limit widespread adoption. While distilling large models into smaller ones offers a sustainable solution, current techniques--such as static knowledge distillation, resource-intensive reinforcement learning from human feedback, or limited self-reflection--struggle to yield substantial and lasting performance gains. In this paper, we present a novel Debate and Reflect (D&R) framework that orchestrates multi-turn debates between smaller models and stronger teacher models, eliciting actionable feedback (e.g., error analysis, corrective strategies) to guide student models. Further, we introduce Tree-structured Direct Preference Optimization (T-DPO) to efficiently leverage these debate logs, organizing interactions into a hierarchical format for effective training. Empirical evaluations across diverse NLP benchmarks demonstrate that our approach significantly improves smaller-model accuracy, robustness, and generalization, outperforming conventional baselines by a large margin.
Related papers
- Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws [52.10468229008941]
This paper formalizes an emerging learning paradigm that uses a trained model as a reference to guide and enhance the training of a target model through strategic data selection or weighting.<n>We provide theoretical insights into why this approach improves generalization and data efficiency compared to training without a reference model.<n>Building on these insights, we introduce a novel method for Contrastive Language-Image Pretraining with a reference model, termed DRRho-CLIP.
arXiv Detail & Related papers (2025-05-10T16:55:03Z) - Detect, Explain, Escalate: Low-Carbon Dialogue Breakdown Management for LLM-Powered Agents [30.13634341221476]
Large Language Models (LLMs) are transforming numerous applications, but their susceptibility to conversational breakdowns remains a critical challenge undermining user trust.<n>This paper introduces a "Detect, Explain, Escalate" framework to manage dialogue breakdowns in LLM-powered agents, emphasizing low-carbon operation.
arXiv Detail & Related papers (2025-04-26T07:51:05Z) - Debate-Feedback: A Multi-Agent Framework for Efficient Legal Judgment Prediction [7.196065223124077]
We propose a novel legal judgment prediction model based on the Debate-Feedback architecture.<n>Unlike traditional methods, our model achieves significant improvements in efficiency by minimizing the need for large historical datasets.
arXiv Detail & Related papers (2025-04-07T09:34:14Z) - Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking [21.23826888841565]
We present a novel approach for training small language models for reasoning-intensive document ranking.<n>We use web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations.<n>Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches.
arXiv Detail & Related papers (2025-04-04T21:27:48Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - Optimal Query Allocation in Extractive QA with LLMs: A Learning-to-Defer Framework with Theoretical Guarantees [3.4289478404209826]
Large Language Models excel in generative tasks but exhibit inefficiencies in structured text selection.<n>We propose a Learning-to-Defer framework that allocates queries to specialized experts, ensuring high-confidence predictions.
arXiv Detail & Related papers (2024-10-21T08:21:00Z) - Adversarial Multi-Agent Evaluation of Large Language Models through Iterative Debates [0.0]
We propose a framework that interprets large language models (LLMs) as advocates within an ensemble of interacting agents.
This approach offers a more dynamic and comprehensive evaluation process compared to traditional human-based assessments or automated metrics.
arXiv Detail & Related papers (2024-10-07T00:22:07Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.