Adversarial Multi-Agent Evaluation of Large Language Models through Iterative Debates
- URL: http://arxiv.org/abs/2410.04663v2
- Date: Thu, 24 Oct 2024 21:42:20 GMT
- Title: Adversarial Multi-Agent Evaluation of Large Language Models through Iterative Debates
- Authors: Chaithanya Bandi, Abir Harrasse,
- Abstract summary: We propose a framework that interprets large language models (LLMs) as advocates within an ensemble of interacting agents.
This approach offers a more dynamic and comprehensive evaluation process compared to traditional human-based assessments or automated metrics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores optimal architectures for evaluating the outputs of large language models (LLMs) using LLMs themselves. We propose a novel framework that interprets LLMs as advocates within an ensemble of interacting agents, allowing them to defend their answers and reach conclusions through a judge and jury system. This approach offers a more dynamic and comprehensive evaluation process compared to traditional human-based assessments or automated metrics. We discuss the motivation behind this framework, its key components, and comparative advantages. We also present a probabilistic model to evaluate the error reduction achieved by iterative advocate systems. Finally, we outline experiments to validate the effectiveness of multi-advocate architectures and discuss future research directions.
Related papers
- Revisiting Benchmark and Assessment: An Agent-based Exploratory Dynamic Evaluation Framework for LLMs [29.72874725703848]
We introduce two concepts: Benchmark+, which extends traditional question-answer benchmark into a more flexible "strategy-criterion" format; and Assessment+, which enhances the interaction process.
We propose an agent-based evaluation framework called TestAgent, which implements these concepts through retrieval augmented generation and reinforcement learning.
arXiv Detail & Related papers (2024-10-15T11:20:42Z) - Thinking Fair and Slow: On the Efficacy of Structured Prompts for Debiasing Language Models [14.405446719317291]
Existing debiasing techniques are typically training-based or require access to the model's internals and output distributions.
We evaluate a comprehensive end-user-focused iterative framework of debiasing that applies System 2 thinking processes for prompts to induce logical, reflective, and critical text generation.
arXiv Detail & Related papers (2024-05-16T20:27:58Z) - DEBATE: Devil's Advocate-Based Assessment and Text Evaluation [6.2689399557794525]
We propose DEBATE, an NLG evaluation framework based on multi-agent scoring system.
Within the framework, one agent is instructed to criticize other agents' arguments.
We show that the extensiveness of debates among agents and the persona of an agent can influence the performance of evaluators.
arXiv Detail & Related papers (2024-05-16T09:41:12Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - LLM Comparator: Visual Analytics for Side-by-Side Evaluation of Large
Language Models [31.426274932333264]
We present Comparator, a novel visual analytics tool for interactively analyzing results from automatic side-by-side evaluation.
The tool supports interactive for users to understand when and why a model performs better or worse than a baseline model.
arXiv Detail & Related papers (2024-02-16T09:14:49Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
We propose ScaleEval, an agent-debate-assisted meta-evaluation framework.
We release the code for our framework, which is publicly available on GitHub.
arXiv Detail & Related papers (2024-01-30T07:03:32Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
We propose an alternative approach called User-Guided Response Optimization (UGRO) to combine it with a smaller task-oriented dialogue model.
This approach uses LLM as annotation-free user simulator to assess dialogue responses, combining them with smaller fine-tuned end-to-end TOD models.
Our approach outperforms previous state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2023-06-16T13:04:56Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs)
In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol.
We propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators.
arXiv Detail & Related papers (2023-05-22T15:12:43Z) - Perspectives on Large Language Models for Relevance Judgment [56.935731584323996]
Large language models (LLMs) claim that they can assist with relevance judgments.
It is not clear whether automated judgments can reliably be used in evaluations of retrieval systems.
arXiv Detail & Related papers (2023-04-13T13:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.