From Virtual Agents to Robot Teams: A Multi-Robot Framework Evaluation in High-Stakes Healthcare Context
- URL: http://arxiv.org/abs/2506.03546v1
- Date: Wed, 04 Jun 2025 04:05:38 GMT
- Title: From Virtual Agents to Robot Teams: A Multi-Robot Framework Evaluation in High-Stakes Healthcare Context
- Authors: Yuanchen Bai, Zijian Ding, Angelique Taylor,
- Abstract summary: Current frameworks treat agents as conceptual task executors rather than physically embodied entities.<n>We propose three design guidelines emphasizing process transparency, proactive failure recovery, and contextual grounding.<n>Our work informs the development of more resilient and robust multi-agent robotic systems.
- Score: 2.016235597066821
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Advancements in generative models have enabled multi-agent systems (MAS) to perform complex virtual tasks such as writing and code generation, which do not generalize well to physical multi-agent robotic teams. Current frameworks often treat agents as conceptual task executors rather than physically embodied entities, and overlook critical real-world constraints such as spatial context, robotic capabilities (e.g., sensing and navigation). To probe this gap, we reconfigure and stress-test a hierarchical multi-agent robotic team built on the CrewAI framework in a simulated emergency department onboarding scenario. We identify five persistent failure modes: role misalignment; tool access violations; lack of in-time handling of failure reports; noncompliance with prescribed workflows; bypassing or false reporting of task completion. Based on this analysis, we propose three design guidelines emphasizing process transparency, proactive failure recovery, and contextual grounding. Our work informs the development of more resilient and robust multi-agent robotic systems (MARS), including opportunities to extend virtual multi-agent frameworks to the real world.
Related papers
- From MAS to MARS: Coordination Failures and Reasoning Trade-offs in Hierarchical Multi-Agent Robotic Systems within a Healthcare Scenario [3.5262044630932254]
Multi-agent robotic systems (MARS) build upon multi-agent systems by integrating physical and task-related constraints.<n>Despite the availability of advanced multi-agent frameworks, their real-world deployment on robots remains limited.
arXiv Detail & Related papers (2025-08-06T17:54:10Z) - MetaAgent: Automatically Constructing Multi-Agent Systems Based on Finite State Machines [23.407716896592383]
We propose a finite state machine based framework that can automatically generate a multi-agent system.<n>Given a task description, MetaAgent will design a multi-agent system and polish it through an optimization algorithm.<n>When the multi-agent system is deployed, the finite state machine will control the agent's actions and the state transitions.
arXiv Detail & Related papers (2025-07-30T12:22:30Z) - RoBridge: A Hierarchical Architecture Bridging Cognition and Execution for General Robotic Manipulation [90.81956345363355]
RoBridge is a hierarchical intelligent architecture for general robotic manipulation.<n>It consists of a high-level cognitive planner (HCP) based on a large-scale pre-trained vision-language model (VLM)<n>It unleashes the procedural skill of reinforcement learning, effectively bridging the gap between cognition and execution.
arXiv Detail & Related papers (2025-05-03T06:17:18Z) - EmbodiedAgent: A Scalable Hierarchical Approach to Overcome Practical Challenge in Multi-Robot Control [4.163413782205929]
EmbodiedAgent is a hierarchical framework for heterogeneous multi-robot control.<n>Our approach integrates a next-action prediction paradigm with a structured memory system to decompose tasks into executable robot skills.<n>We present MultiPlan+, a dataset of more than 18,000 annotated planning instances spanning 100 scenarios.
arXiv Detail & Related papers (2025-04-14T09:33:42Z) - REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation [57.628771707989166]
We propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution.<n>ReMAC incorporates two key modules: a self-reflection module performing pre-conditions and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning.
arXiv Detail & Related papers (2025-03-28T03:51:40Z) - EMOS: Embodiment-aware Heterogeneous Multi-robot Operating System with LLM Agents [33.77674812074215]
We introduce a novel multi-agent framework designed to enable effective collaboration among heterogeneous robots.<n>We propose a self-prompted approach, where agents comprehend robot URDF files and call robot kinematics tools to generate descriptions of their physics capabilities.<n>The Habitat-MAS benchmark is designed to assess how a multi-agent framework handles tasks that require embodiment-aware reasoning.
arXiv Detail & Related papers (2024-10-30T03:20:01Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
We present a framework for intuitive robot programming by non-experts.
We leverage natural language prompts and contextual information from the Robot Operating System (ROS)
Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface.
arXiv Detail & Related papers (2024-06-28T08:28:38Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
We propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX.
RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints.
To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning.
arXiv Detail & Related papers (2024-02-25T15:31:43Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Enhancing Multi-Robot Perception via Learned Data Association [37.866254392010454]
We address the multi-robot collaborative perception problem, specifically in the context of multi-view infilling for distributed semantic segmentation.
We propose the Multi-Agent Infilling Network: an neural architecture that can be deployed to each agent in a robotic swarm.
Specifically, each robot is in charge of locally encoding and decoding visual information, and an neural mechanism allows for an uncertainty-aware and context-based exchange of intermediate features.
arXiv Detail & Related papers (2021-07-01T22:45:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.