A Large-Scale Referring Remote Sensing Image Segmentation Dataset and Benchmark
- URL: http://arxiv.org/abs/2506.03583v1
- Date: Wed, 04 Jun 2025 05:26:51 GMT
- Title: A Large-Scale Referring Remote Sensing Image Segmentation Dataset and Benchmark
- Authors: Zhigang Yang, Huiguang Yao, Linmao Tian, Xuezhi Zhao, Qiang Li, Qi Wang,
- Abstract summary: We introduce NWPU-Refer, the largest and most diverse RRSIS dataset to date, comprising 15,003 high-resolution images (1024-2048px) spanning 30+ countries with 49,745 annotated targets.<n>We also propose the Multi-scale Referring Network (MRSNet), a novel framework tailored for the unique demands of RRSIS.
- Score: 8.707197692292292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring Remote Sensing Image Segmentation is a complex and challenging task that integrates the paradigms of computer vision and natural language processing. Existing datasets for RRSIS suffer from critical limitations in resolution, scene diversity, and category coverage, which hinders the generalization and real-world applicability of refer segmentation models. To facilitate the development of this field, we introduce NWPU-Refer, the largest and most diverse RRSIS dataset to date, comprising 15,003 high-resolution images (1024-2048px) spanning 30+ countries with 49,745 annotated targets supporting single-object, multi-object, and non-object segmentation scenarios. Additionally, we propose the Multi-scale Referring Segmentation Network (MRSNet), a novel framework tailored for the unique demands of RRSIS. MRSNet introduces two key innovations: (1) an Intra-scale Feature Interaction Module (IFIM) that captures fine-grained details within each encoder stage, and (2) a Hierarchical Feature Interaction Module (HFIM) to enable seamless cross-scale feature fusion, preserving spatial integrity while enhancing discriminative power. Extensive experiments conducte on the proposed NWPU-Refer dataset demonstrate that MRSNet achieves state-of-the-art performance across multiple evaluation metrics, validating its effectiveness. The dataset and code are publicly available at https://github.com/CVer-Yang/NWPU-Refer.
Related papers
- AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection [58.67129770371016]
We propose a novel IRSTD framework that reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization.<n>AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy.
arXiv Detail & Related papers (2025-05-21T07:02:05Z) - Multimodal-Aware Fusion Network for Referring Remote Sensing Image Segmentation [7.992331117310217]
Referring remote sensing image segmentation (RRSIS) is a novel visual task in remote sensing images segmentation.<n>We design a multimodal-aware fusion network (MAFN) to achieve fine-grained alignment and fusion between the two modalities.
arXiv Detail & Related papers (2025-03-14T08:31:21Z) - Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation [50.433911327489554]
The goal of referring remote sensing image segmentation (RRSIS) is to generate a pixel-level mask of the target object identified by the referring expression.<n>To address the aforementioned challenges, a novel RRSIS framework is proposed, termed the cross-modal bidirectional interaction model (CroBIM)<n>To further forster the research of RRSIS, we also construct RISBench, a new large-scale benchmark dataset comprising 52,472 image-language-label triplets.
arXiv Detail & Related papers (2024-10-11T08:28:04Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - DuAT: Dual-Aggregation Transformer Network for Medical Image
Segmentation [21.717520350930705]
Transformer-based models have been widely demonstrated to be successful in computer vision tasks.
However, they are often dominated by features of large patterns leading to the loss of local details.
We propose a Dual-Aggregation Transformer Network called DuAT, which is characterized by two innovative designs.
Our proposed model outperforms state-of-the-art methods in the segmentation of skin lesion images, and polyps in colonoscopy images.
arXiv Detail & Related papers (2022-12-21T07:54:02Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - CSRNet: Cascaded Selective Resolution Network for Real-time Semantic
Segmentation [18.63596070055678]
We propose a light Cascaded Selective Resolution Network (CSRNet) to improve the performance of real-time segmentation.
The proposed network builds a three-stage segmentation system, which integrates feature information from low resolution to high resolution.
Experiments on two well-known datasets demonstrate that the proposed CSRNet effectively improves the performance for real-time segmentation.
arXiv Detail & Related papers (2021-06-08T14:22:09Z) - Universal-RCNN: Universal Object Detector via Transferable Graph R-CNN [117.80737222754306]
We present a novel universal object detector called Universal-RCNN.
We first generate a global semantic pool by integrating all high-level semantic representation of all the categories.
An Intra-Domain Reasoning Module learns and propagates the sparse graph representation within one dataset guided by a spatial-aware GCN.
arXiv Detail & Related papers (2020-02-18T07:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.