Improving LLM-Based Fault Localization with External Memory and Project Context
- URL: http://arxiv.org/abs/2506.03585v1
- Date: Wed, 04 Jun 2025 05:33:32 GMT
- Title: Improving LLM-Based Fault Localization with External Memory and Project Context
- Authors: Inseok Yeo, Duksan Ryu, Jongmoon Baik,
- Abstract summary: We introduce MemFL, a novel approach that enhances fault localization by integrating project-specific knowledge via external memory.<n>MemFL simplifies debug into three streamlined steps, significantly improving efficiency and accuracy.<n>MemFL with GPT-4.1-mini outperformed existing methods by 24.4%, requiring only 24.7 seconds and 0.0094 dollars per bug.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault localization, the process of identifying the software components responsible for failures, is essential but often time-consuming. Recent advances in Large Language Models (LLMs) have enabled fault localization without extensive defect datasets or model fine-tuning. However, existing LLM-based methods rely only on general LLM capabilities and lack integration of project-specific knowledge, resulting in limited effectiveness, especially for complex software. We introduce MemFL, a novel approach that enhances LLM-based fault localization by integrating project-specific knowledge via external memory. This memory includes static summaries of the project and dynamic, iterative debugging insights gathered from previous attempts. By leveraging external memory, MemFL simplifies debugging into three streamlined steps, significantly improving efficiency and accuracy. Iterative refinement through dynamic memory further enhances reasoning quality over time. Evaluated on the Defects4J benchmark, MemFL using GPT-4o-mini localized 12.7% more bugs than current LLM-based methods, achieving this improvement with just 21% of the execution time (17.4 seconds per bug) and 33% of the API cost (0.0033 dollars per bug). On complex projects, MemFL's advantage increased to 27.6%. Additionally, MemFL with GPT-4.1-mini outperformed existing methods by 24.4%, requiring only 24.7 seconds and 0.0094 dollars per bug. MemFL thus demonstrates significant improvements by effectively incorporating project-specific knowledge into LLM-based fault localization, delivering high accuracy with reduced time and cost.
Related papers
- Quantizing Large Language Models for Code Generation: A Differentiated Replication [51.85505914274633]
Large Language Models (LLMs) have shown an impressive capability in code generation and, specifically, to automatically implement requirements described in natural language.<n>LLMs pose significant challenges related to their memory (and, consequently, carbon) footprint.<n>New frontier for LLM quantization is 4-bit precision, resulting in an average memory footprint reduction of 70%.
arXiv Detail & Related papers (2025-03-10T09:26:08Z) - Where's the Bug? Attention Probing for Scalable Fault Localization [18.699014321422023]
We present Bug Attention Probe (BAP), a method which learns state-of-the-art fault localization without any direct localization labels.<n>BAP is significantly more efficient than prompting, outperforming large open-weight models at a small fraction of the computational cost.
arXiv Detail & Related papers (2025-02-19T18:59:32Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.<n>LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.<n>Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
Large language models (LLMs) have exhibited impressive capabilities across a myriad of tasks, yet they occasionally yield undesirable outputs.<n>We introduce LLM2, a novel framework that combines an LLM with a process-based verifier.<n>LLMs2 is responsible for generating plausible candidates, while the verifier provides timely process-based feedback to distinguish desirable and undesirable outputs.
arXiv Detail & Related papers (2024-12-29T06:32:36Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Software Fault Localization Based on Multi-objective Feature Fusion and Deep Learning [1.6724380665811045]
Software fault localization remains challenging due to limited feature diversity and low precision in traditional methods.
This paper proposes a novel approach that integrates multi-objective optimization with deep learning models to improve both accuracy and efficiency in fault localization (FL)
arXiv Detail & Related papers (2024-11-26T04:37:32Z) - A Multi-Agent Approach to Fault Localization via Graph-Based Retrieval and Reflexion [8.22737389683156]
Traditional fault localization techniques require extensive training datasets and high computational resources.<n>Recent advances in Large Language Models (LLMs) offer new opportunities by enhancing code understanding and reasoning.<n>We propose LLM4FL, a multi-agent fault localization framework that utilizes three specialized LLM agents.<n> evaluated on the Defects4J benchmark, which includes 675 faults from 14 Java projects, LLM4FL achieves an 18.55% improvement in Top-1 accuracy over AutoFL and 4.82% over SoapFL.
arXiv Detail & Related papers (2024-09-20T16:47:34Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
arXiv Detail & Related papers (2024-03-22T08:57:07Z) - Large Language Models for Test-Free Fault Localization [11.080712737595174]
We propose a language model based fault localization approach that locates buggy lines of code without any test coverage information.
We fine-tune language models with 350 million, 6 billion, and 16 billion parameters on small, manually curated corpora of buggy programs.
Our empirical evaluation shows that LLMAO improves the Top-1 results over the state-of-the-art machine learning fault localization (MLFL) baselines by 2.3%-54.4%, and Top-5 results by 14.4%-35.6%.
arXiv Detail & Related papers (2023-10-03T01:26:39Z) - Large Language Models in Fault Localisation [32.87044163543427]
This paper investigates the capability of ChatGPT-3.5 and ChatGPT-4, the two state-of-the-art LLMs, on fault localisation.
Within function-level context, ChatGPT-4 outperforms all the existing fault localisation methods.
However, when the code context of the Defects4J dataset expands to the class-level, ChatGPT-4's performance suffers a significant drop.
arXiv Detail & Related papers (2023-08-29T13:07:27Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.