YOND: Practical Blind Raw Image Denoising Free from Camera-Specific Data Dependency
- URL: http://arxiv.org/abs/2506.03645v1
- Date: Wed, 04 Jun 2025 07:40:48 GMT
- Title: YOND: Practical Blind Raw Image Denoising Free from Camera-Specific Data Dependency
- Authors: Hansen Feng, Lizhi Wang, Yiqi Huang, Tong Li, Lin Zhu, Hua Huang,
- Abstract summary: We introduce a novel blind raw image denoising method named YOND, which represents You Only Need a Denoiser.<n> trained solely on synthetic data, YOND can generalize robustly to noisy raw images captured by diverse unknown cameras.<n>Specifically, we propose three key modules to guarantee the practicality of YOND: coarse-to-fine noise estimation (CNE), expectation-matched variance-stabilizing transform (EM-VST), and SNR-guided denoiser (SNR-Net)
- Score: 21.484736989505464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of photography has created a growing demand for a practical blind raw image denoising method. Recently, learning-based methods have become mainstream due to their excellent performance. However, most existing learning-based methods suffer from camera-specific data dependency, resulting in performance drops when applied to data from unknown cameras. To address this challenge, we introduce a novel blind raw image denoising method named YOND, which represents You Only Need a Denoiser. Trained solely on synthetic data, YOND can generalize robustly to noisy raw images captured by diverse unknown cameras. Specifically, we propose three key modules to guarantee the practicality of YOND: coarse-to-fine noise estimation (CNE), expectation-matched variance-stabilizing transform (EM-VST), and SNR-guided denoiser (SNR-Net). Firstly, we propose CNE to identify the camera noise characteristic, refining the estimated noise parameters based on the coarse denoised image. Secondly, we propose EM-VST to eliminate camera-specific data dependency, correcting the bias expectation of VST according to the noisy image. Finally, we propose SNR-Net to offer controllable raw image denoising, supporting adaptive adjustments and manual fine-tuning. Extensive experiments on unknown cameras, along with flexible solutions for challenging cases, demonstrate the superior practicality of our method. The source code will be publicly available at the \href{https://fenghansen.github.io/publication/YOND}{project homepage}.
Related papers
- Towards Controllable Real Image Denoising with Camera Parameters [15.41728621274958]
We introduce a new controllable denoising framework that adaptively removes noise from images.<n>Specifically, we focus on ISO, shutter speed, and F-number, which are closely related to noise levels.<n>We convert these selected parameters into a vector to control and enhance the performance of the denoising network.
arXiv Detail & Related papers (2025-07-02T10:57:33Z) - Combining Pre- and Post-Demosaicking Noise Removal for RAW Video [2.772895608190934]
Denoising is one of the fundamental steps of the processing pipeline that converts data captured by a camera sensor into a display-ready image or video.<n>We propose a self-similarity-based denoising scheme that weights both a pre- and a post-demosaicking denoiser for Bayer-patterned CFA video data.<n>We show that a balance between the two leads to better image quality, and we empirically find that higher noise levels benefit from a higher influence pre-demosaicking.
arXiv Detail & Related papers (2024-10-03T15:20:19Z) - Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising [19.08732222562782]
Supervised deep learning has become the method of choice for image denoising.<n>We show that, contrary to popular belief, denoising networks specialized in the removal of Gaussian noise can be efficiently leveraged in favor of real-world image denoising.
arXiv Detail & Related papers (2024-07-24T16:23:46Z) - Unsupervised Denoising for Signal-Dependent and Row-Correlated Imaging Noise [54.0185721303932]
We present the first fully unsupervised deep learning-based denoiser capable of handling imaging noise that is row-correlated as well as signal-dependent.<n>Our approach uses a Variational Autoencoder with a specially designed autoregressive decoder.<n>Our method does not require a pre-trained noise model and can be trained from scratch using unpaired noisy data.
arXiv Detail & Related papers (2023-10-11T20:48:20Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
We introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise.
It inherently generates accurate raw image noise for different camera sensors.
arXiv Detail & Related papers (2021-10-10T10:45:24Z) - Fully Unsupervised Diversity Denoising with Convolutional Variational
Autoencoders [81.30960319178725]
We propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs)
First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder.
We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training.
arXiv Detail & Related papers (2020-06-10T21:28:13Z) - CycleISP: Real Image Restoration via Improved Data Synthesis [166.17296369600774]
We present a framework that models camera imaging pipeline in forward and reverse directions.
By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets.
arXiv Detail & Related papers (2020-03-17T15:20:25Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.