論文の概要: Intersectional Bias in Pre-Trained Image Recognition Models
- arxiv url: http://arxiv.org/abs/2506.03664v1
- Date: Wed, 04 Jun 2025 07:55:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.21141
- Title: Intersectional Bias in Pre-Trained Image Recognition Models
- Title(参考訳): 事前学習画像認識モデルにおける断面積バイアス
- Authors: Valerie Krug, Sebastian Stober,
- Abstract要約: 顔画像のイメージネット分類器の表現におけるバイアスについて検討する。
ImageNet分類器の表現は、特に年齢の区別が可能である。
あまり強調されないが、このモデルは特定の民族を関連付け、中年の集団で性別を区別しているように見える。
- 参考スコア(独自算出の注目度): 0.1074267520911262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning models have achieved remarkable success. Training them is often accelerated by building on top of pre-trained models which poses the risk of perpetuating encoded biases. Here, we investigate biases in the representations of commonly used ImageNet classifiers for facial images while considering intersections of sensitive variables age, race and gender. To assess the biases, we use linear classifier probes and visualize activations as topographic maps. We find that representations in ImageNet classifiers particularly allow differentiation between ages. Less strongly pronounced, the models appear to associate certain ethnicities and distinguish genders in middle-aged groups.
- Abstract(参考訳): ディープラーニングモデルは素晴らしい成功を収めました。
トレーニングはしばしば、事前に訓練されたモデルの上に構築することで加速される。
本稿では,顔画像のイメージネット分類器の表現におけるバイアスについて,年齢,人種,性別の交点を考慮した検討を行った。
偏りを評価するため,線形分類器プローブを用い,アクティベーションを地形図として視覚化する。
ImageNet分類器の表現は、特に年齢の区別が可能である。
あまり強調されないが、このモデルは特定の民族を関連付け、中年の集団で性別を区別しているように見える。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
我々は,クラスが等しくないことを実験的に証明し,様々なデータセットにまたがる画像分類モデルにおいて,公平性の問題が顕著であることを示した。
以上の結果から,モデルでは認識が困難であるクラスに対して,予測バイアスが大きくなる傾向が示唆された。
データ拡張および表現学習アルゴリズムは、画像分類のある程度の公平性を促進することにより、全体的なパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T07:54:50Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
画像キャプションタスクのためのモデルに基づく評価指標において、性別バイアスの体系的研究を行う。
偏りのある世代と偏りのない世代を区別できないことを含む、これらの偏りのあるメトリクスを使用することによる負の結果を実証する。
人間の判断と相関を損なうことなく、測定バイアスを緩和する簡便で効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T04:27:40Z) - DASH: Visual Analytics for Debiasing Image Classification via
User-Driven Synthetic Data Augmentation [27.780618650580923]
画像分類モデルは、訓練データにおいて、入力特徴と出力クラスとの間の無関係な共起に基づいてクラスを予測することをしばしば学習する。
我々は、望ましくない相関を「データバイアス」と呼び、データバイアスを引き起こす視覚的特徴を「バイアス要因」と呼んでいる。
人間の介入なしにバイアスを自動的に識別し緩和することは困難である。
論文 参考訳(メタデータ) (2022-09-14T00:44:41Z) - Visual Recognition with Deep Learning from Biased Image Datasets [6.10183951877597]
視覚認知の文脈において、バイアスモデルがどのように治療問題に適用できるかを示す。
作業中のバイアス機構に関する(近似的な)知識に基づいて、我々のアプローチは観察を再重み付けする。
本稿では,画像データベース間で共有される低次元画像表現を提案する。
論文 参考訳(メタデータ) (2021-09-06T10:56:58Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
画像歪みの存在下での4つの最先端深層顔認識モデルの性能評価を行った。
我々は、画像歪みが、異なるサブグループ間でのモデルの性能ギャップと関係していることを観察した。
論文 参考訳(メタデータ) (2021-08-14T16:49:05Z) - Understanding Gender and Racial Disparities in Image Recognition Models [0.0]
クロスエントロピーを用いたマルチラベルソフトマックスの損失を,多ラベル分類問題における二進的クロスエントロピーの代わりに損失関数として検討する。
MR2データセットを用いて、モデル結果の公平性を評価し、モデルのアクティベーションを見て誤りを解釈し、可能な修正を提案する。
論文 参考訳(メタデータ) (2021-07-20T01:05:31Z) - Age and Gender Prediction From Face Images Using Attentional
Convolutional Network [6.3344832182228]
注意的・残差畳み込みネットワークのアンサンブルに基づく深層学習の枠組みを提案し,高い精度で顔画像の性別と年齢を推定する。
我々のモデルは、一般的な顔年齢と性別のデータセットに基づいて訓練され、有望な結果を得た。
論文 参考訳(メタデータ) (2020-10-08T06:33:55Z) - InsideBias: Measuring Bias in Deep Networks and Application to Face
Gender Biometrics [73.85525896663371]
この研究は、ディープニューラルネットワークアーキテクチャに基づく学習プロセスのバイアスについて検討する。
一般的なディープニューラルネットワークに基づく2つの性別検出モデルを採用している。
バイアスモデルを検出する新しい手法であるInsideBiasを提案する。
論文 参考訳(メタデータ) (2020-04-14T15:20:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。