論文の概要: Reason from Future: Reverse Thought Chain Enhances LLM Reasoning
- arxiv url: http://arxiv.org/abs/2506.03673v1
- Date: Wed, 04 Jun 2025 08:03:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.219012
- Title: Reason from Future: Reverse Thought Chain Enhances LLM Reasoning
- Title(参考訳): Reason from Future: Reverse Thought Chain Enhans LLM Reasoning
- Authors: Yinlong Xu, Yanzhao Zheng, Shuoshuo Sun, Shuaihan Huang, Baohua Dong, Hangcheng Zhu, Ruohui Huang, Gang Yu, Hongxia Xu, Jian Wu,
- Abstract要約: 我々はReason from Future(RFF)と呼ばれる新しい推論パラダイムを提案する。
RFFは、トップダウン計画とボトムアップ推論蓄積を組み合わせた双方向推論によって推論パスを生成する。
RFFは、複雑なタスクを解決するために、より正確で検索スペースの少ない従来のパラダイムよりも優れている。
- 参考スコア(独自算出の注目度): 18.637191592875155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been demonstrated that carefully designed reasoning paradigms, like Chain-of-Thought (CoT) and Tree-of-Thought (ToT), can enhance the reasoning capabilities of small language models by detailed thinking and extensive thought searching, unbounded branching factors in the searching space create prohibitive reasoning consumption. However these methods fall into the trap of local optimum reasoning, which means the model lacks a global perspective while solving problems. We propose a novel reasoning paradigm called Reason from Future (RFF), which generates reasoning paths by bidirectional reasoning that combines top-down planning with bottom-up reasoning accumulation. The essence of RFF lies in its reverse reasoning mechanism, which prioritizes core logical relationships and imposes goal-oriented constraints on intermediate steps, thereby reducing the searching space and mitigating error accumulation inherent in sequential forward reasoning. Empirical evaluations across diverse experiments demonstrate that RFF outperforms conventional paradigms with higher accuracy and less searching space to solve complex tasks.
- Abstract(参考訳): CoT(Chain-of-Thought)やToT(Tree-of-Thought)のような慎重に設計された推論パラダイムは、詳細な思考と広範囲な思考探索によって、小さな言語モデルの推論能力を高めることができる。
しかし、これらの手法は局所的最適推論の罠に陥り、これはモデルが問題を解きながらグローバルな視点を欠いていることを意味する。
本稿では、トップダウン計画とボトムアップ推論蓄積を組み合わせた双方向推論により推論経路を生成するRFF(Reason from Future)と呼ばれる新しい推論パラダイムを提案する。
RFFの本質は、コア論理的関係を優先し、中間ステップにゴール指向の制約を課し、探索空間を減らし、逐次フォワード推論に固有の誤差の蓄積を緩和する逆推論機構にある。
様々な実験における実証的な評価は、RFFが複雑なタスクを解くために、より正確で検索スペースの少ない従来のパラダイムよりも優れていることを示している。
関連論文リスト
- A Survey on Latent Reasoning [100.54120559169735]
大きな言語モデル(LLM)は印象的な推論機能を示している。
中間ステップを言語化するCoT推論は、モデルの表現帯域幅を制限する。
潜在的推論は、モデルの連続的な隠れ状態に完全にマルチステップの推論を実行することで、このボトルネックに対処する。
論文 参考訳(メタデータ) (2025-07-08T17:29:07Z) - Thinking About Thinking: SAGE-nano's Inverse Reasoning for Self-Aware Language Models [0.0]
大規模言語モデル(LLM)は、Chain-of-Thoughtプロンプトで複雑な推論タスクを解く際、顕著な能力を示した。
我々は, LLM を分解し, 自己の推論連鎖をポストホックで説明できる新しいパラダイムであるtextbfinverse reasoning を紹介した。
私たちの研究は、透明なAIシステムのための新たな道を作り、AIの安全性、教育、科学的発見において大きなギャップを埋めます。
論文 参考訳(メタデータ) (2025-06-30T09:53:41Z) - Lost at the Beginning of Reasoning [82.18834329384514]
第1の推論ステップが最終予測に不当に大きな影響を与えることを示す。
本稿では、報酬モデルを利用して高品質な第1推論ステップを特定し、維持する効率的なサンプリング戦略を提案する。
モデル自己補正能力を体系的に評価するために、意図的に欠陥のある第1の推論ステップで構築された新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2025-06-27T09:53:57Z) - Detection and Mitigation of Hallucination in Large Reasoning Models: A Mechanistic Perspective [11.013059864022667]
推論の幻覚は論理的に一貫性があるが、事実的に誤った推論トレースである。
これらのエラーは構造化推論に埋め込まれており、検出が難しく、潜在的に有害である可能性がある。
本稿では,ロジット間のばらつきを測定することによって推論の深さを定量化するReasoning Scoreを提案する。
また,ステップレベルの深い推論報酬をポテンシャルベース形状に組み込んだ強化強化学習アルゴリズムGRPO-Rを導入する。
論文 参考訳(メタデータ) (2025-05-19T09:16:40Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
大規模言語モデル(LLM)は複雑なタスクにおいて顕著な機能を示した。
OpenAI o1とDeepSeek-R1の最近の進歩は、System-2推論ドメインのパフォーマンスをさらに改善した。
論文 参考訳(メタデータ) (2025-03-20T17:59:38Z) - From Chaos to Order: The Atomic Reasoner Framework for Fine-grained Reasoning in Large Language Models [46.02816479205161]
我々は,微粒な推論を可能にする認知推論戦略であるtextbfAtomic Reasoner(textbfAR)を提案する。
ARは推論プロセスを原子認知単位に分解し、認知的ルーティング機構を使用する。
結果より, 完全解探索の計算負担を伴わないARの優れた推論能力を示す。
論文 参考訳(メタデータ) (2025-03-20T08:34:53Z) - Training Large Language Models to Reason in a Continuous Latent Space [84.5618790930725]
我々は,制約のない潜在空間における大規模言語モデル(LLM)推論の可能性を探るため,新しいパラダイムであるCoconut (Chain of Continuous Thought)を導入する。
実験により、ココナッツはいくつかの推論タスクにおいてLLMを効果的に増強できることが示されている。
これらの知見は、潜伏推論の可能性を実証し、将来の研究に価値ある洞察を与える。
論文 参考訳(メタデータ) (2024-12-09T18:55:56Z) - CSCE: Boosting LLM Reasoning by Simultaneous Enhancing of Causal Significance and Consistency [11.144164626192904]
チェーン・オブ・シンキング(CoT)のような連鎖型手法は、大規模言語モデル(LLM)の推論タスクの解決において、その役割を担っている。
本稿では、因果的重要性と一貫性を同時に考慮する非チェーン型推論フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T08:28:23Z) - DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy [76.58614128865652]
非決定性から決定性への進化として推論過程を再考する新しい視点であるDetermLRを提案する。
まず、既知の条件を次の2つのタイプに分類する: 決定的および不決定的前提 これは、推論プロセスのオール方向を提供し、不決定的データを段階的決定的洞察に変換する際のLCMを導く。
我々は、利用可能な施設の保存と抽出、推論メモリによる推論パスの自動化、そしてその後の推論ステップに関する歴史的推論の詳細を保存する。
論文 参考訳(メタデータ) (2023-10-28T10:05:51Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [55.66353783572259]
Causal-Consistency Chain-of-Thoughtは、基礎モデルの忠実さと因果性を強化するために、マルチエージェントコラボレーションを活用する。
我々のフレームワークは、広範囲かつ包括的な評価を通じて、最先端の手法よりも大きな優位性を示す。
論文 参考訳(メタデータ) (2023-08-23T04:59:21Z) - Towards Trustworthy Explanation: On Causal Rationalization [9.48539398357156]
本研究では,2つの因果デシラタに基づく合理化モデルを提案する。
提案した因果合理化の優れた性能は,実世界のレビューや医療データセットで実証されている。
論文 参考訳(メタデータ) (2023-06-25T03:34:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。