Out-of-Distribution Graph Models Merging
- URL: http://arxiv.org/abs/2506.03674v1
- Date: Wed, 04 Jun 2025 08:04:07 GMT
- Title: Out-of-Distribution Graph Models Merging
- Authors: Yidi Wang, Jiawei Gu, pei Xiaobing, Xubin Zheng, Xiao Luo, Pengyang Wang, Ziyue Qiao,
- Abstract summary: We propose a graph generation strategy that instantiates the mixture distribution of multiple domains.<n>Our framework is architecture-agnostic and can operate without any source/target domain data.
- Score: 9.926662903459691
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies a novel problem of out-of-distribution graph models merging, which aims to construct a generalized model from multiple graph models pre-trained on different domains with distribution discrepancy. This problem is challenging because of the difficulty in learning domain-invariant knowledge implicitly in model parameters and consolidating expertise from potentially heterogeneous GNN backbones. In this work, we propose a graph generation strategy that instantiates the mixture distribution of multiple domains. Then, we merge and fine-tune the pre-trained graph models via a MoE module and a masking mechanism for generalized adaptation. Our framework is architecture-agnostic and can operate without any source/target domain data. Both theoretical analysis and experimental results demonstrate the effectiveness of our approach in addressing the model generalization problem.
Related papers
- Do Graph Diffusion Models Accurately Capture and Generate Substructure Distributions? [28.19526635775658]
Diffusion models do not possess universal expressivity to accurately model the distribution scores of complex graph data.<n>Our work addresses this limitation by focusing on the frequency of specific substructures as a key characteristic of target graph distributions.<n>We establish a theoretical connection between the expressivity of Graph Neural Networks (GNNs) and the overall performance of graph diffusion models.
arXiv Detail & Related papers (2025-02-04T17:04:16Z) - One Model for One Graph: A New Perspective for Pretraining with Cross-domain Graphs [59.7297608804716]
Graph Neural Networks (GNNs) have emerged as a powerful tool to capture intricate network patterns.<n>Existing GNNs require careful domain-specific architecture designs and training from scratch on each dataset.<n>We propose a novel cross-domain pretraining framework, "one model for one graph"
arXiv Detail & Related papers (2024-11-30T01:49:45Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data.<n>Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts.
arXiv Detail & Related papers (2024-05-26T13:11:55Z) - PGODE: Towards High-quality System Dynamics Modeling [40.76121531452706]
This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors.
Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by graph neural networks (GNNs)
We propose a new approach named Prototypical Graph ODE to address the problem.
arXiv Detail & Related papers (2023-11-11T12:04:47Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Crime Prediction with Graph Neural Networks and Multivariate Normal
Distributions [18.640610803366876]
We tackle the sparsity problem in high resolution by leveraging the flexible structure of graph convolutional networks (GCNs)
We build our model with Graph Convolutional Gated Recurrent Units (Graph-ConvGRU) to learn spatial, temporal, and categorical relations.
We show that our model is not only generative but also precise.
arXiv Detail & Related papers (2021-11-29T17:37:01Z) - Adversarial Stein Training for Graph Energy Models [11.182263394122142]
We use an energy-based model (EBM) based on multi-channel graph neural networks (GNN) to learn permutation invariant unnormalized density functions on graphs.
We find that this approach achieves competitive results on graph generation compared to benchmark models.
arXiv Detail & Related papers (2021-08-30T03:55:18Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.