Advancements in Artificial Intelligence Applications for Cardiovascular Disease Research
- URL: http://arxiv.org/abs/2506.03698v1
- Date: Wed, 04 Jun 2025 08:31:28 GMT
- Title: Advancements in Artificial Intelligence Applications for Cardiovascular Disease Research
- Authors: Yuanlin Mo, Haishan Huang, Bocheng Liang, Weibo Ma,
- Abstract summary: Recent advancements in artificial intelligence (AI) have revolutionized cardiovascular medicine.<n>Deep learning architectures enable automated analysis of medical imaging and physiological signals.<n>Future directions emphasize hybrid models integrating multimodal data and adaptive algorithms to refine personalized cardiovascular care.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in artificial intelligence (AI) have revolutionized cardiovascular medicine, particularly through integration with computed tomography (CT), magnetic resonance imaging (MRI), electrocardiography (ECG) and ultrasound (US). Deep learning architectures, including convolutional neural networks and generative adversarial networks, enable automated analysis of medical imaging and physiological signals, surpassing human capabilities in diagnostic accuracy and workflow efficiency. However, critical challenges persist, including the inability to validate input data accuracy, which may propagate diagnostic errors. This review highlights AI's transformative potential in precision diagnostics while underscoring the need for robust validation protocols to ensure clinical reliability. Future directions emphasize hybrid models integrating multimodal data and adaptive algorithms to refine personalized cardiovascular care.
Related papers
- The Role of AI in Early Detection of Life-Threatening Diseases: A Retinal Imaging Perspective [10.884863227198975]
We systematically synthesize the latest OCT/A and AO developments, AI/ML approaches, and mHealth/Tele-ophthalmology initiatives.<n>We propose a roadmap for multicenter protocol standardization, prospective validation trials, and seamless incorporation of retinal screening into primary and specialty care pathways.
arXiv Detail & Related papers (2025-05-27T07:19:37Z) - Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography [0.0]
This study presents a comprehensive evaluation of radiomics-based and deep learning-based approaches for disease detection in chest radiography.<n>It focuses on COVID-19, lung opacity, and viral pneumonia.<n>The results aim to inform the integration of AI-driven diagnostic tools in clinical practice.
arXiv Detail & Related papers (2025-04-16T16:54:37Z) - The Impact of Artificial Intelligence on Emergency Medicine: A Review of Recent Advances [0.2544903230401084]
Artificial Intelligence (AI) is revolutionizing emergency medicine by enhancing diagnostic processes and improving patient outcomes.<n>Machine learning and deep learning are pivotal in interpreting complex imaging data, offering rapid, accurate diagnoses and potentially surpassing traditional diagnostic methods.<n>Despite these advancements, the integration of AI into clinical practice presents challenges such as data privacy, algorithmic bias, and the need for extensive validation across diverse settings.
arXiv Detail & Related papers (2025-03-17T17:45:00Z) - Leveraging AI for Automatic Classification of PCOS Using Ultrasound Imaging [0.0]
The AUTO-PCOS Classification Challenge seeks to advance the diagnostic capabilities of artificial intelligence (AI) in identifying Polycystic Ovary Syndrome (PCOS)<n>This report outlines our methodology for building a robust AI pipeline utilizing transfer learning with the InceptionV3 architecture to achieve high accuracy in binary classification.
arXiv Detail & Related papers (2024-12-30T11:56:11Z) - Electrocardiogram (ECG) Based Cardiac Arrhythmia Detection and Classification using Machine Learning Algorithms [0.0]
Machine Learning (ML) and Deep Learning (DL) have opened new prospects in medical sciences for improved diagnosis, prognosis, and treatment of severe health conditions.<n>This paper focuses on the development of an ML model with high predictive accuracy to classify arrhythmic electrocardiogram (ECG) signals.
arXiv Detail & Related papers (2024-12-07T08:29:44Z) - Explainable Artificial Intelligence for Medical Applications: A Review [42.33274794442013]
This article reviews recent research grounded in explainable artificial intelligence (XAI)<n>It focuses on medical practices within the visual, audio, and multimodal perspectives.<n>We endeavour to categorise and synthesise these practices, aiming to provide support and guidance for future researchers and healthcare professionals.
arXiv Detail & Related papers (2024-11-15T11:31:06Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
Synthetic Data Generation based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered.<n>This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images.<n>The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.<n>As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.<n>The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
We propose a framework for autonomous robotic navigation for subretinal injection.
Our method consists of an instrument pose estimation method, an online registration between the robotic and the i OCT system, and trajectory planning tailored for navigation to an injection target.
Our experiments on ex-vivo porcine eyes demonstrate the precision and repeatability of the method.
arXiv Detail & Related papers (2023-01-17T21:41:21Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
We introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis.
We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks.
arXiv Detail & Related papers (2022-08-19T12:06:46Z) - Detecting Spurious Correlations with Sanity Tests for Artificial
Intelligence Guided Radiology Systems [22.249702822013045]
A critical component to deploying AI in radiology is to gain confidence in a developed system's efficacy and safety.
The current gold standard approach is to conduct an analytical validation of performance on a generalization dataset.
We describe a series of sanity tests to identify when a system performs well on development data for the wrong reasons.
arXiv Detail & Related papers (2021-03-04T14:14:05Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.