Scaling Transformers for Discriminative Recommendation via Generative Pretraining
- URL: http://arxiv.org/abs/2506.03699v1
- Date: Wed, 04 Jun 2025 08:31:33 GMT
- Title: Scaling Transformers for Discriminative Recommendation via Generative Pretraining
- Authors: Chunqi Wang, Bingchao Wu, Zheng Chen, Lei Shen, Bing Wang, Xiaoyi Zeng,
- Abstract summary: We propose a framework named GPSD (textbfGenerative textbfPretraining for textbfScalable textbfDiscriminative Recommendation) to address the overfitting issue.<n>Extensive experiments conducted on both industrial-scale and publicly available datasets demonstrate the superior performance of GPSD.
- Score: 15.796591192359044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discriminative recommendation tasks, such as CTR (click-through rate) and CVR (conversion rate) prediction, play critical roles in the ranking stage of large-scale industrial recommender systems. However, training a discriminative model encounters a significant overfitting issue induced by data sparsity. Moreover, this overfitting issue worsens with larger models, causing them to underperform smaller ones. To address the overfitting issue and enhance model scalability, we propose a framework named GPSD (\textbf{G}enerative \textbf{P}retraining for \textbf{S}calable \textbf{D}iscriminative Recommendation), drawing inspiration from generative training, which exhibits no evident signs of overfitting. GPSD leverages the parameters learned from a pretrained generative model to initialize a discriminative model, and subsequently applies a sparse parameter freezing strategy. Extensive experiments conducted on both industrial-scale and publicly available datasets demonstrate the superior performance of GPSD. Moreover, it delivers remarkable improvements in online A/B tests. GPSD offers two primary advantages: 1) it substantially narrows the generalization gap in model training, resulting in better test performance; and 2) it leverages the scalability of Transformers, delivering consistent performance gains as models are scaled up. Specifically, we observe consistent performance improvements as the model dense parameters scale from 13K to 0.3B, closely adhering to power laws. These findings pave the way for unifying the architectures of recommendation models and language models, enabling the direct application of techniques well-established in large language models to recommendation models.
Related papers
- Fake it till You Make it: Reward Modeling as Discriminative Prediction [49.31309674007382]
GAN-RM is an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering.<n>Our method trains the reward model through discrimination between a small set of representative, unpaired target samples.<n>Experiments demonstrate our GAN-RM's effectiveness across multiple key applications.
arXiv Detail & Related papers (2025-06-16T17:59:40Z) - LARES: Latent Reasoning for Sequential Recommendation [96.26996622771593]
We present LARES, a novel and scalable LAtent REasoning framework for Sequential recommendation.<n>Our proposed approach employs a recurrent architecture that allows flexible expansion of reasoning depth without increasing parameter complexity.<n>Our framework exhibits seamless compatibility with existing advanced models, further improving their recommendation performance.
arXiv Detail & Related papers (2025-05-22T16:22:54Z) - Direct Post-Training Preference Alignment for Multi-Agent Motion Generation Models Using Implicit Feedback from Pre-training Demonstrations [5.4726256850993735]
Post-training preference alignment is crucial for producing human-preferred motions.<n>We leverage implicit preferences encoded in pre-training demonstrations to construct preference rankings among the pre-trained model's generations.<n>We apply our approach to large-scale traffic simulation and demonstrate its effectiveness in improving the realism of pre-trained model's generated behaviors.
arXiv Detail & Related papers (2025-03-25T23:02:13Z) - Scaling Sequential Recommendation Models with Transformers [0.0]
We take inspiration from the scaling laws observed in training large language models, and explore similar principles for sequential recommendation.<n> Compute-optimal training is possible but requires a careful analysis of the compute-performance trade-offs specific to the application.<n>We also show that performance scaling translates to downstream tasks by fine-tuning larger pre-trained models on smaller task-specific domains.
arXiv Detail & Related papers (2024-12-10T15:20:56Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Structuring a Training Strategy to Robustify Perception Models with Realistic Image Augmentations [1.5723316845301678]
This report introduces a novel methodology for training with augmentations to enhance model robustness and performance in such conditions.
We present a comprehensive framework that includes identifying weak spots in Machine Learning models, selecting suitable augmentations, and devising effective training strategies.
Experimental results demonstrate improvements in model performance, as measured by commonly used metrics such as mean Average Precision (mAP) and mean Intersection over Union (mIoU) on open-source object detection and semantic segmentation models and datasets.
arXiv Detail & Related papers (2024-08-30T14:15:48Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language
Models [152.29364079385635]
As pre-trained models grow bigger, the fine-tuning process can be time-consuming and computationally expensive.
We propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights.
Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning and (ii) resource-efficient inference.
arXiv Detail & Related papers (2021-10-30T03:29:47Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.