Dropout-Robust Mechanisms for Differentially Private and Fully Decentralized Mean Estimation
- URL: http://arxiv.org/abs/2506.03746v1
- Date: Wed, 04 Jun 2025 09:16:34 GMT
- Title: Dropout-Robust Mechanisms for Differentially Private and Fully Decentralized Mean Estimation
- Authors: César Sabater, Sonia Ben Mokhtar, Jan Ramon,
- Abstract summary: In this work, we propose a new protocol for fully decentralized mean estimation, which enforces differential privacy.<n>Our protocol, which enforces differential privacy, requires no central orchestration and employs low-variance correlated noise.
- Score: 1.1060425537315088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving differentially private computations in decentralized settings poses significant challenges, particularly regarding accuracy, communication cost, and robustness against information leakage. While cryptographic solutions offer promise, they often suffer from high communication overhead or require centralization in the presence of network failures. Conversely, existing fully decentralized approaches typically rely on relaxed adversarial models or pairwise noise cancellation, the latter suffering from substantial accuracy degradation if parties unexpectedly disconnect. In this work, we propose IncA, a new protocol for fully decentralized mean estimation, a widely used primitive in data-intensive processing. Our protocol, which enforces differential privacy, requires no central orchestration and employs low-variance correlated noise, achieved by incrementally injecting sensitive information into the computation. First, we theoretically demonstrate that, when no parties permanently disconnect, our protocol achieves accuracy comparable to that of a centralized setting-already an improvement over most existing decentralized differentially private techniques. Second, we empirically show that our use of low-variance correlated noise significantly mitigates the accuracy loss experienced by existing techniques in the presence of dropouts.
Related papers
- Differentially private and decentralized randomized power method [15.955127242261808]
We propose a strategy to reduce the variance of the noise introduced to achieve Differential Privacy (DP)
We adapt the method to a decentralized framework with a low computational and communication overhead, while preserving the accuracy.
We show that it is possible to use a noise scale in the decentralized setting that is similar to the one in the centralized setting.
arXiv Detail & Related papers (2024-11-04T09:53:03Z) - Differential error feedback for communication-efficient decentralized learning [48.924131251745266]
We propose a new decentralized communication-efficient learning approach that blends differential quantization with error feedback.
We show that the resulting communication-efficient strategy is stable both in terms of mean-square error and average bit rate.
The results establish that, in the small step-size regime and with a finite number of bits, it is possible to attain the performance achievable in the absence of compression.
arXiv Detail & Related papers (2024-06-26T15:11:26Z) - Privacy Preserving Semi-Decentralized Mean Estimation over Intermittently-Connected Networks [59.43433767253956]
We consider the problem of privately estimating the mean of vectors distributed across different nodes of an unreliable wireless network.
In a semi-decentralized setup, nodes can collaborate with their neighbors to compute a local consensus, which they relay to a central server.
We study the tradeoff between collaborative relaying and privacy leakage due to the data sharing among nodes.
arXiv Detail & Related papers (2024-06-06T06:12:15Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - A Linearly Convergent Algorithm for Decentralized Optimization: Sending
Less Bits for Free! [72.31332210635524]
Decentralized optimization methods enable on-device training of machine learning models without a central coordinator.
We propose a new randomized first-order method which tackles the communication bottleneck by applying randomized compression operators.
We prove that our method can solve the problems without any increase in the number of communications compared to the baseline.
arXiv Detail & Related papers (2020-11-03T13:35:53Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.