PPO in the Fisher-Rao geometry
- URL: http://arxiv.org/abs/2506.03757v1
- Date: Wed, 04 Jun 2025 09:23:27 GMT
- Title: PPO in the Fisher-Rao geometry
- Authors: Razvan-Andrei Lascu, David Šiška, Łukasz Szpruch,
- Abstract summary: Proximal Policy Optimization (PPO) has become a widely adopted algorithm for reinforcement learning.<n>Despite its popularity, PPO lacks formal theoretical guarantees for policy improvement and convergence.<n>In this paper, we derive a tighter surrogate in the Fisher-Rao geometry, yielding a novel variant, Fisher-Rao PPO (FR-PPO)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proximal Policy Optimization (PPO) has become a widely adopted algorithm for reinforcement learning, offering a practical policy gradient method with strong empirical performance. Despite its popularity, PPO lacks formal theoretical guarantees for policy improvement and convergence. PPO is motivated by Trust Region Policy Optimization (TRPO) that utilizes a surrogate loss with a KL divergence penalty, which arises from linearizing the value function within a flat geometric space. In this paper, we derive a tighter surrogate in the Fisher-Rao (FR) geometry, yielding a novel variant, Fisher-Rao PPO (FR-PPO). Our proposed scheme provides strong theoretical guarantees, including monotonic policy improvement. Furthermore, in the tabular setting, we demonstrate that FR-PPO achieves sub-linear convergence without any dependence on the dimensionality of the action or state spaces, marking a significant step toward establishing formal convergence results for PPO-based algorithms.
Related papers
- On the Theory and Practice of GRPO: A Trajectory-Corrected Approach with Fast Convergence [2.8165669455824696]
Group Relative Policy Optimization is a critic-free reinforcement learning algorithm.<n>We show that GRPO update rule estimates the policy gradient at the old policy rather than the current one.<n>We propose a new algorithm: Trajectory level Importance Corrected GRPO.
arXiv Detail & Related papers (2025-08-04T19:01:19Z) - Convergence of Policy Mirror Descent Beyond Compatible Function Approximation [66.4260157478436]
We develop theoretical PMD general policy classes where we strictly assume a weaker variational dominance and obtain convergence to the best-in-class policy.<n>Our main notion leverages a novel notion induced by the local norm induced by the occupancy- gradient measure.
arXiv Detail & Related papers (2025-02-16T08:05:46Z) - Understanding Reference Policies in Direct Preference Optimization [50.67309013764383]
Direct Preference Optimization (DPO) has become a widely used training method for the instruction fine-tuning of large language models (LLMs)
This work explores an under-investigated aspect of DPO - its dependency on the reference model or policy.
arXiv Detail & Related papers (2024-07-18T17:08:10Z) - Transductive Off-policy Proximal Policy Optimization [27.954910833441705]
This paper introduces a novel off-policy extension to the original PPO method, christened Transductive Off-policy PPO (ToPPO)
Our contribution includes a novel formulation of the policy improvement lower bound for prospective policies derived from off-policy data.
Comprehensive experimental results across six representative tasks underscore ToPPO's promising performance.
arXiv Detail & Related papers (2024-06-06T09:29:40Z) - Dropout Strategy in Reinforcement Learning: Limiting the Surrogate
Objective Variance in Policy Optimization Methods [0.0]
Policy-based reinforcement learning algorithms are widely used in various fields.
These algorithms introduce importance sampling into policy iteration.
This can lead to a high variance of the surrogate objective and indirectly affects the stability and convergence of the algorithm.
arXiv Detail & Related papers (2023-10-31T11:38:26Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Monotonic Improvement Guarantees under Non-stationarity for
Decentralized PPO [66.5384483339413]
We present a new monotonic improvement guarantee for optimizing decentralized policies in cooperative Multi-Agent Reinforcement Learning (MARL)
We show that a trust region constraint can be effectively enforced in a principled way by bounding independent ratios based on the number of agents in training.
arXiv Detail & Related papers (2022-01-31T20:39:48Z) - Hinge Policy Optimization: Rethinking Policy Improvement and
Reinterpreting PPO [6.33198867705718]
Policy optimization is a fundamental principle for designing reinforcement learning algorithms.
Despite its superior empirical performance, PPO-clip has not been justified via theoretical proof up to date.
This is the first ever that can prove global convergence to an optimal policy for a variant of PPO-clip.
arXiv Detail & Related papers (2021-10-26T15:56:57Z) - Proximal Policy Optimization with Relative Pearson Divergence [8.071506311915396]
PPO clips density ratio of latest and baseline policies with a threshold, while its minimization target is unclear.
This paper proposes a new variant of PPO by considering a regularization problem of relative Pearson (RPE) divergence, so-called PPO-RPE.
Through four benchmark tasks, PPO-RPE performed as well as or better than the conventional methods in terms of the task performance by the learned policy.
arXiv Detail & Related papers (2020-10-07T09:11:22Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z) - Neural Proximal/Trust Region Policy Optimization Attains Globally
Optimal Policy [119.12515258771302]
We show that a variant of PPOO equipped with over-parametrization converges to globally optimal networks.
The key to our analysis is the iterate of infinite gradient under a notion of one-dimensional monotonicity, where the gradient and are instant by networks.
arXiv Detail & Related papers (2019-06-25T03:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.