論文の概要: AssetOpsBench: Benchmarking AI Agents for Task Automation in Industrial Asset Operations and Maintenance
- arxiv url: http://arxiv.org/abs/2506.03828v1
- Date: Wed, 04 Jun 2025 10:57:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.293996
- Title: AssetOpsBench: Benchmarking AI Agents for Task Automation in Industrial Asset Operations and Maintenance
- Title(参考訳): AssetOpsBench: 産業資産運用とメンテナンスにおけるタスク自動化のためのAIエージェントのベンチマーク
- Authors: Dhaval Patel, Shuxin Lin, James Rayfield, Nianjun Zhou, Roman Vaculin, Natalia Martinez, Fearghal O'donncha, Jayant Kalagnanam,
- Abstract要約: 本稿では,これまで異なる専門知識と手動調整を必要としていたタスクを,AIエージェントが自律的に管理する未来を想定する。
AssetOpsBench - ドメイン固有のエージェントの開発、オーケストレーション、評価をガイドするために設計された、統合されたフレームワークと環境。
我々は,このような包括的システムに対する重要な要件を概説し,実世界の産業活動に対する認識,推論,制御を統合するエージェント構築に関する実用的な洞察を提供する。
- 参考スコア(独自算出の注目度): 7.110126223593506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI for Industrial Asset Lifecycle Management aims to automate complex operational workflows -- such as condition monitoring, maintenance planning, and intervention scheduling -- to reduce human workload and minimize system downtime. Traditional AI/ML approaches have primarily tackled these problems in isolation, solving narrow tasks within the broader operational pipeline. In contrast, the emergence of AI agents and large language models (LLMs) introduces a next-generation opportunity: enabling end-to-end automation across the entire asset lifecycle. This paper envisions a future where AI agents autonomously manage tasks that previously required distinct expertise and manual coordination. To this end, we introduce AssetOpsBench -- a unified framework and environment designed to guide the development, orchestration, and evaluation of domain-specific agents tailored for Industry 4.0 applications. We outline the key requirements for such holistic systems and provide actionable insights into building agents that integrate perception, reasoning, and control for real-world industrial operations. The software is available at https://github.com/IBM/AssetOpsBench.
- Abstract(参考訳): AI for Industrial Asset Lifecycle Managementは、条件監視、メンテナンス計画、介入スケジューリングといった複雑な運用ワークフローを自動化することを目的としている。
従来型のAI/MLアプローチは、これらの問題を分離して対処し、より広範な運用パイプライン内の狭いタスクを解決してきた。
対照的に、AIエージェントと大規模言語モデル(LLMs)の出現は、次世代の機会、すなわち、アセットライフサイクル全体にわたってエンドツーエンドの自動化を可能にする。
本稿では,これまで異なる専門知識と手動調整を必要としていたタスクを,AIエージェントが自律的に管理する未来を想定する。
この目的のために、私たちはAssetOpsBenchを紹介します。AssetOpsBenchは、Industrial 4.0アプリケーションに適したドメイン固有のエージェントの開発、オーケストレーション、評価をガイドするために設計された統合されたフレームワークと環境です。
我々は,このような包括的システムに対する重要な要件を概説し,実世界の産業活動に対する認識,推論,制御を統合するエージェント構築に関する実用的な洞察を提供する。
このソフトウェアはhttps://github.com/IBM/AssetOpsBench.comで入手できる。
関連論文リスト
- OS Agents: A Survey on MLLM-based Agents for General Computing Devices Use [101.57043903478257]
アイアンマンの架空のJ.A.R.V.I.Sほど有能で多用途なAIアシスタントを作る夢は、長い間想像力に恵まれてきた。
マルチモーダル(multi-modal)な大きな言語モデル((M)LLMs)の進化により、この夢は現実に近づいている。
本調査は,OSエージェント研究の現状を整理し,学術調査と産業開発の両方の指針を提供する。
論文 参考訳(メタデータ) (2025-08-06T14:33:45Z) - Taming Uncertainty via Automation: Observing, Analyzing, and Optimizing Agentic AI Systems [1.9751175705897066]
大規模言語モデル (LLMs) はエージェントシステムにますます展開され、対話型のLLMエージェントは複雑で、メモリ、ツール、動的プランニングを用いて適応的に実行される。
従来のソフトウェアオブザーバビリティと運用プラクティスは、これらの課題に対処するには不十分です。
本稿ではエージェントAIシステムの動作を観察し、分析し、最適化し、自動化するための総合的なフレームワークであるAgentOpsを紹介する。
論文 参考訳(メタデータ) (2025-07-15T12:54:43Z) - Agentic AI for Intent-Based Industrial Automation [0.6906005491572401]
この研究は、エージェントAIとインテントベースのパラダイムを統合する概念的フレームワークを提案する。
このフレームワークは意図に基づく処理に基づいて、人間のオペレーターが自然言語でハイレベルなビジネスや運用目標を表現できるようにする。
CMAPSSデータセットとGoogle Agent Developer Kit (ADK)を使って概念実証を行った。
論文 参考訳(メタデータ) (2025-06-05T12:50:54Z) - AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds [12.464941027105306]
AI for IT Operations(AIOps)は、障害のローカライゼーションや根本原因分析といった複雑な運用タスクを自動化することを目的としており、人間の作業量を削減し、顧客への影響を最小限にする。
大規模言語モデル(LLM)とAIエージェントの最近の進歩は、エンドツーエンドとマルチタスクの自動化を可能にすることで、AIOpsに革命をもたらしている。
マイクロサービスクラウド環境をデプロイし、障害を注入し、ワークロードを生成し、テレメトリデータをエクスポートするフレームワークであるAIOPSLABを紹介します。
論文 参考訳(メタデータ) (2025-01-12T04:17:39Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
我々は、デジタルワーカーと同じような方法で世界と対話するAIエージェントを評価するためのベンチマークであるTheAgentCompanyを紹介する。
最も競争力のあるエージェントは、タスクの30%を自律的に完了させることができる。
これは、実際の職場の設定でLMエージェントをシミュレートすることで、タスク自動化に関する微妙な絵を描く。
論文 参考訳(メタデータ) (2024-12-18T18:55:40Z) - Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
並列処理とリアルタイムツール利用が可能な非同期AIエージェントを導入する。
私たちの重要な貢献は、エージェントの実行とプロンプトのためのイベント駆動有限状態マシンアーキテクチャです。
この研究は、流体とマルチタスクの相互作用が可能なAIエージェントを作成するための概念的なフレームワークと実践的なツールの両方を提示している。
論文 参考訳(メタデータ) (2024-10-28T23:57:19Z) - BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
我々は、様々なドメインにわたる複雑なユースケースアプリケーションを扱う柔軟なエージェントエンジニアリングフレームワークの設計に重点を置いている。
提案するフレームワークは,産業用アプリケーションの信頼性を提供し,複数の自律エージェントに対して,スケーラブルでフレキシブルで協調的なワークフローを保証するためのテクニックを提供する。
論文 参考訳(メタデータ) (2024-06-28T16:39:20Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
本稿では,タスク自動化の体系的アプローチである計算管理を紹介する。
この記事では、ワークフロー内でAIを実装するプロセスを開始するための、ステップバイステップの手順を3つ紹介する。
論文 参考訳(メタデータ) (2024-02-07T01:45:14Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
LLM(Large Language Models)は、人間のような知性を持つ言語である。
本稿では,ALMをベースとしたエージェントを用いた高度な自動化のための基盤的自動化パラダイムであるエージェントプロセス自動化(APA)を紹介する。
そして、人間の指示を駆使し、特殊エージェントの調整によって複雑な決定を下すように設計されたエージェントであるProAgentをインスタンス化する。
論文 参考訳(メタデータ) (2023-11-02T14:32:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。