AssetOpsBench: Benchmarking AI Agents for Task Automation in Industrial Asset Operations and Maintenance
- URL: http://arxiv.org/abs/2506.03828v1
- Date: Wed, 04 Jun 2025 10:57:35 GMT
- Title: AssetOpsBench: Benchmarking AI Agents for Task Automation in Industrial Asset Operations and Maintenance
- Authors: Dhaval Patel, Shuxin Lin, James Rayfield, Nianjun Zhou, Roman Vaculin, Natalia Martinez, Fearghal O'donncha, Jayant Kalagnanam,
- Abstract summary: This paper envisions a future where AI agents autonomously manage tasks that previously required distinct expertise and manual coordination.<n>We introduce AssetOpsBench -- a unified framework and environment designed to guide the development, orchestration, and evaluation of domain-specific agents.<n>We outline the key requirements for such holistic systems and provide actionable insights into building agents that integrate perception, reasoning, and control for real-world industrial operations.
- Score: 7.110126223593506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI for Industrial Asset Lifecycle Management aims to automate complex operational workflows -- such as condition monitoring, maintenance planning, and intervention scheduling -- to reduce human workload and minimize system downtime. Traditional AI/ML approaches have primarily tackled these problems in isolation, solving narrow tasks within the broader operational pipeline. In contrast, the emergence of AI agents and large language models (LLMs) introduces a next-generation opportunity: enabling end-to-end automation across the entire asset lifecycle. This paper envisions a future where AI agents autonomously manage tasks that previously required distinct expertise and manual coordination. To this end, we introduce AssetOpsBench -- a unified framework and environment designed to guide the development, orchestration, and evaluation of domain-specific agents tailored for Industry 4.0 applications. We outline the key requirements for such holistic systems and provide actionable insights into building agents that integrate perception, reasoning, and control for real-world industrial operations. The software is available at https://github.com/IBM/AssetOpsBench.
Related papers
- OS Agents: A Survey on MLLM-based Agents for General Computing Devices Use [101.57043903478257]
The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations.<n>With the evolution of (multi-modal) large language models ((M)LLMs), this dream is closer to reality.<n>This survey aims to consolidate the state of OS Agents research, providing insights to guide both academic inquiry and industrial development.
arXiv Detail & Related papers (2025-08-06T14:33:45Z) - Taming Uncertainty via Automation: Observing, Analyzing, and Optimizing Agentic AI Systems [1.9751175705897066]
Large Language Models (LLMs) are increasingly deployed within agentic systems-collections of interacting, LLM-powered agents that execute complex, adaptive using memory, tools, and dynamic planning.<n>Traditional software observability and operations practices fall short in addressing these challenges.<n>This paper introduces AgentOps: a comprehensive framework for observing, analyzing, optimizing, and automating operation of agentic AI systems.
arXiv Detail & Related papers (2025-07-15T12:54:43Z) - Agentic AI for Intent-Based Industrial Automation [0.6906005491572401]
This work proposes a conceptual framework that integrates Agentic AI with the intent-based paradigm.<n>Based on the intent-based processing, the framework allows human operators to express high-level business or operational goals in natural language.<n>A proof of concept was implemented using the CMAPSS dataset and Google Agent Developer Kit (ADK)
arXiv Detail & Related papers (2025-06-05T12:50:54Z) - AIOpsLab: A Holistic Framework to Evaluate AI Agents for Enabling Autonomous Clouds [12.464941027105306]
AI for IT Operations (AIOps) aims to automate complex operational tasks, such as fault localization and root cause analysis, to reduce human workload and minimize customer impact.<n>Recent advances in Large Language Models (LLMs) and AI agents are revolutionizing AIOps by enabling end-to-end and multitask automation.<n>We present AIOPSLAB, a framework that deploys microservice cloud environments, injects faults, generates workloads, and exports telemetry data but also orchestrates these components and provides interfaces for interacting with and evaluating agents.
arXiv Detail & Related papers (2025-01-12T04:17:39Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
We introduce TheAgentCompany, a benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker.<n>We find that the most competitive agent can complete 30% of tasks autonomously.<n>This paints a nuanced picture on task automation with simulating LM agents in a setting a real workplace.
arXiv Detail & Related papers (2024-12-18T18:55:40Z) - Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
We introduce asynchronous AI agents capable of parallel processing and real-time tool-use.
Our key contribution is an event-driven finite-state machine architecture for agent execution and prompting.
This work presents both a conceptual framework and practical tools for creating AI agents capable of fluid, multitasking interactions.
arXiv Detail & Related papers (2024-10-28T23:57:19Z) - BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration [0.0]
We focus on designing a flexible agent engineering framework capable of handling complex use case applications across various domains.
The proposed framework provides reliability in industrial applications and presents techniques to ensure a scalable, flexible, and collaborative workflow for multiple autonomous agents.
arXiv Detail & Related papers (2024-06-28T16:39:20Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
Large Language Models (LLMs) have emerged human-like intelligence.
This paper introduces Agentic Process Automation (APA), a groundbreaking automation paradigm using LLM-based agents for advanced automation.
We then instantiate ProAgent, an agent designed to craft from human instructions and make intricate decisions by coordinating specialized agents.
arXiv Detail & Related papers (2023-11-02T14:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.