Vision Remember: Alleviating Visual Forgetting in Efficient MLLM with Vision Feature Resample
- URL: http://arxiv.org/abs/2506.03928v1
- Date: Wed, 04 Jun 2025 13:22:35 GMT
- Title: Vision Remember: Alleviating Visual Forgetting in Efficient MLLM with Vision Feature Resample
- Authors: Ze Feng, Jiang-Jiang Liu, Sen Yang, Lingyu Xiao, Xiaofan Li, Wankou Yang, Jingdong Wang,
- Abstract summary: Redundant vision tokens consume a significant amount of computational memory and resources.<n>We propose Vision Remember, which is inserted between the LLM decoder layers to allow vision tokens to re-memorize vision features.<n>During the resampling process, each vision token only attends to a local region in vision features, which is referred to as saliency-enhancing local attention.
- Score: 30.263537686102016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study the Efficient Multimodal Large Language Model. Redundant vision tokens consume a significant amount of computational memory and resources. Therefore, many previous works compress them in the Vision Projector to reduce the number of vision tokens. However, simply compressing in the Vision Projector can lead to the loss of visual information, especially for tasks that rely on fine-grained spatial relationships, such as OCR and Chart \& Table Understanding. To address this problem, we propose Vision Remember, which is inserted between the LLM decoder layers to allow vision tokens to re-memorize vision features. Specifically, we retain multi-level vision features and resample them with the vision tokens that have interacted with the text token. During the resampling process, each vision token only attends to a local region in vision features, which is referred to as saliency-enhancing local attention. Saliency-enhancing local attention not only improves computational efficiency but also captures more fine-grained contextual information and spatial relationships within the region. Comprehensive experiments on multiple visual understanding benchmarks validate the effectiveness of our method when combined with various Efficient Vision Projectors, showing performance gains without sacrificing efficiency. Based on Vision Remember, LLaVA-VR with only 2B parameters is also superior to previous representative MLLMs such as Tokenpacker-HD-7B and DeepSeek-VL-7B.
Related papers
- VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning [95.89543460132413]
Vision-language models (VLMs) have improved performance by increasing the number of visual tokens.<n>However, most real-world scenarios do not require such an extensive number of visual tokens.<n>We present a new paradigm for visual token compression, namely, VisionThink.
arXiv Detail & Related papers (2025-07-17T17:59:55Z) - Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment [38.04426918886084]
Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics.<n>Previous efforts have explored visual token reduction either prior to or within the large language models (LLMs)<n>We introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention.
arXiv Detail & Related papers (2025-06-27T14:55:40Z) - Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs [8.97780713904412]
This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in Large Vision-Language Models (LVLMs)<n>Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. Experiments on three LVLM benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead.
arXiv Detail & Related papers (2025-06-11T08:46:55Z) - ToDRE: Visual Token Pruning via Diversity and Task Awareness for Efficient Large Vision-Language Models [59.47738955960352]
ToDRE is a two-stage and training-free token compression framework.<n>It achieves superior performance by pruning tokens based on token Diversity and token-task RElevance.
arXiv Detail & Related papers (2025-05-24T15:47:49Z) - Introducing Visual Perception Token into Multimodal Large Language Model [53.82301522384719]
Multimodal Large Language Model (MLLM) relies on the perception process of its vision encoder.<n>MLLM still lacks the autonomous capability to control its own visual perception processes.<n>We propose the concept of Visual Perception Token, aiming to empower MLLM with a mechanism to control its visual perception processes.
arXiv Detail & Related papers (2025-02-24T18:56:12Z) - [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
Multi-language Large Language Models (MLLMs) have recently demonstrated strong performance across a wide range of vision tasks.<n>However, their efficient deployment remains a substantial challenge due to high computational costs and memory requirements.<n>We introduce a simple yet effective method for train-free visual compression, called VTC- compression.
arXiv Detail & Related papers (2024-12-08T05:29:39Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
We propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder.
Our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
arXiv Detail & Related papers (2024-11-21T14:22:38Z) - Spatial-Aware Efficient Projector for MLLMs via Multi-Layer Feature Aggregation [10.468784974994465]
The projector plays a crucial role in multi-modal language models (MLLMs)
Current explorations on the projector focus on reducing the number of visual tokens to improve efficiency.
A Spatial-Aware Efficient Projector (SAEP) is proposed to address this issue.
arXiv Detail & Related papers (2024-10-14T09:25:09Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
Vision tokenization is essential for semantic alignment between vision and language.<n>This paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok)<n>SeTok groups visual features into semantic units via a dynamic clustering algorithm.<n>The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features.
arXiv Detail & Related papers (2024-06-07T17:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.