MS-YOLO: A Multi-Scale Model for Accurate and Efficient Blood Cell Detection
- URL: http://arxiv.org/abs/2506.03972v1
- Date: Wed, 04 Jun 2025 14:02:24 GMT
- Title: MS-YOLO: A Multi-Scale Model for Accurate and Efficient Blood Cell Detection
- Authors: Guohua Wu, Shengqi Chen, Pengchao Deng, Wenting Yu,
- Abstract summary: This study proposes the multi-scale YOLO (MS-YOLO), a blood cell detection model based on the YOLOv11 framework.<n>MS-YOLO incorporates three key architectural innovations to enhance detection performance.
- Score: 4.246758319242548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complete blood cell detection holds significant value in clinical diagnostics. Conventional manual microscopy methods suffer from time inefficiency and diagnostic inaccuracies. Existing automated detection approaches remain constrained by high deployment costs and suboptimal accuracy. While deep learning has introduced powerful paradigms to this field, persistent challenges in detecting overlapping cells and multi-scale objects hinder practical deployment. This study proposes the multi-scale YOLO (MS-YOLO), a blood cell detection model based on the YOLOv11 framework, incorporating three key architectural innovations to enhance detection performance. Specifically, the multi-scale dilated residual module (MS-DRM) replaces the original C3K2 modules to improve multi-scale discriminability; the dynamic cross-path feature enhancement module (DCFEM) enables the fusion of hierarchical features from the backbone with aggregated features from the neck to enhance feature representations; and the light adaptive-weight downsampling module (LADS) improves feature downsampling through adaptive spatial weighting while reducing computational complexity. Experimental results on the CBC benchmark demonstrate that MS-YOLO achieves precise detection of overlapping cells and multi-scale objects, particularly small targets such as platelets, achieving an mAP@50 of 97.4% that outperforms existing models. Further validation on the supplementary WBCDD dataset confirms its robust generalization capability. Additionally, with a lightweight architecture and real-time inference efficiency, MS-YOLO meets clinical deployment requirements, providing reliable technical support for standardized blood pathology assessment.
Related papers
- A Hybrid CNN-VSSM model for Multi-View, Multi-Task Mammography Analysis: Robust Diagnosis with Attention-Based Fusion [5.15423063632115]
Early and accurate interpretation of screening mammograms is essential for effective breast cancer detection.<n>Existing AI approaches fall short by focusing on single view inputs or single-task outputs.<n>We propose a novel multi-view, multitask hybrid deep learning framework that processes all four standard mammography views.
arXiv Detail & Related papers (2025-07-22T18:52:18Z) - CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types, and the scarcity of training data.<n>We propose CLIPfusion, a method that leverages both discriminative and generative foundation models.<n>We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection.
arXiv Detail & Related papers (2025-06-13T13:30:15Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
We present a novel approach that combines 2D Gaussian splatting with the Transformer UNet architecture for automated skin cancer diagnosis.<n>Our findings illustrate significant advancements in the precision of segmentation and classification.<n>This integration sets new benchmarks in the field and highlights the potential for further research into multi-task medical image analysis methodologies.
arXiv Detail & Related papers (2025-02-23T23:28:47Z) - Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
Multispectral object detection, utilizing RGB and TIR (thermal infrared) modalities, is widely recognized as a challenging task.<n>It requires not only the effective extraction of features from both modalities and robust fusion strategies, but also the ability to address issues such as spectral discrepancies.<n>We introduce an efficient and easily deployable multispectral object detection framework that can seamlessly optimize high-performing single-modality models.
arXiv Detail & Related papers (2024-11-27T12:18:39Z) - X2-DFD: A framework for eXplainable and eXtendable Deepfake Detection [55.77552681618732]
X2-DFD is an eXplainable and eXtendable framework based on multimodal large-language models (MLLMs) for deepfake detection.<n>The first stage, Model Feature Assessment, systematically evaluates the detectability of forgery-related features for the MLLM.<n>The second stage, Explainable dataset Construction, consists of two key modules: Strong Feature Strengthening and Weak Feature Supplementing.<n>The third stage, Fine-tuning and Inference, involves fine-tuning the MLLM on the constructed dataset and deploying it for final detection and explanation.
arXiv Detail & Related papers (2024-10-08T15:28:33Z) - LSM-YOLO: A Compact and Effective ROI Detector for Medical Detection [8.812471041082105]
We propose a novel model named Lightweight Shunt Matching-YOLO (LSM-YOLO), with Lightweight Adaptive Extraction (LAE) and Multipath Shunt Feature Matching (MSFM)
Experimental results demonstrate that LSM-YOLO achieves 48.6% AP on a private dataset of pancreatic tumors, 65.1% AP on the BCCD blood cell detection public dataset, and 73.0% AP on the Br35h brain tumor detection public dataset.
arXiv Detail & Related papers (2024-08-26T08:16:58Z) - CAF-YOLO: A Robust Framework for Multi-Scale Lesion Detection in Biomedical Imagery [0.0682074616451595]
CAF-YOLO is a nimble yet robust method for medical object detection that leverages the strengths of convolutional neural networks (CNNs) and transformers.
ACFM module enhances the modeling of both global and local features, enabling the capture of long-term feature dependencies.
MSNN improves multi-scale information aggregation by extracting features across diverse scales.
arXiv Detail & Related papers (2024-08-04T01:44:44Z) - Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level
Feature Fusion for Aiding Diagnosis of Blood Diseases [5.788342067882157]
This paper proposes an innovative method of leukocyte detection: the Multi-level Feature Fusion and Deformable Self-attention DETR (MFDS-DETR)
This model uses high-level features as weights to filter low-level feature information via a channel attention module.
We address the issue of leukocyte feature scarcity by incorporating a multi-scale deformable self-attention module in the encoder.
arXiv Detail & Related papers (2024-01-01T16:28:30Z) - ADA-YOLO: Dynamic Fusion of YOLOv8 and Adaptive Heads for Precise Image
Detection and Diagnosis [0.9804179673817571]
We propose ADA-YOLO, a light-weight yet effective method for medical object detection that integrates attention-based mechanisms with the YOLOv8 architecture.
Our proposed method leverages the dynamic feature localisation and parallel regression for computer vision tasks through textitadaptive head module.
arXiv Detail & Related papers (2023-12-14T18:27:13Z) - End-to-End Breast Cancer Radiotherapy Planning via LMMs with Consistency Embedding [47.360760580820966]
We present RO-LMM, a comprehensive large multimodal model (LMM) tailored for the field of radiation oncology.<n>This model effectively manages a series of tasks within the clinical workflow, including clinical context summarization, radiation treatment plan suggestion, and plan-guided target volume segmentation.<n>We present a novel Consistency Embedding Fine-Tuning (CEFTune) technique, which boosts LMM's robustness to noisy inputs while preserving the consistency of handling clean inputs.
arXiv Detail & Related papers (2023-11-27T14:49:06Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Learning Multiscale Consistency for Self-supervised Electron Microscopy
Instance Segmentation [48.267001230607306]
We propose a pretraining framework that enhances multiscale consistency in EM volumes.
Our approach leverages a Siamese network architecture, integrating strong and weak data augmentations.
It effectively captures voxel and feature consistency, showing promise for learning transferable representations for EM analysis.
arXiv Detail & Related papers (2023-08-19T05:49:13Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.