CAF-YOLO: A Robust Framework for Multi-Scale Lesion Detection in Biomedical Imagery
- URL: http://arxiv.org/abs/2408.01897v1
- Date: Sun, 4 Aug 2024 01:44:44 GMT
- Title: CAF-YOLO: A Robust Framework for Multi-Scale Lesion Detection in Biomedical Imagery
- Authors: Zilin Chen, Shengnan Lu,
- Abstract summary: CAF-YOLO is a nimble yet robust method for medical object detection that leverages the strengths of convolutional neural networks (CNNs) and transformers.
ACFM module enhances the modeling of both global and local features, enabling the capture of long-term feature dependencies.
MSNN improves multi-scale information aggregation by extracting features across diverse scales.
- Score: 0.0682074616451595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection is of paramount importance in biomedical image analysis, particularly for lesion identification. While current methodologies are proficient in identifying and pinpointing lesions, they often lack the precision needed to detect minute biomedical entities (e.g., abnormal cells, lung nodules smaller than 3 mm), which are critical in blood and lung pathology. To address this challenge, we propose CAF-YOLO, based on the YOLOv8 architecture, a nimble yet robust method for medical object detection that leverages the strengths of convolutional neural networks (CNNs) and transformers. To overcome the limitation of convolutional kernels, which have a constrained capacity to interact with distant information, we introduce an attention and convolution fusion module (ACFM). This module enhances the modeling of both global and local features, enabling the capture of long-term feature dependencies and spatial autocorrelation. Additionally, to improve the restricted single-scale feature aggregation inherent in feed-forward networks (FFN) within transformer architectures, we design a multi-scale neural network (MSNN). This network improves multi-scale information aggregation by extracting features across diverse scales. Experimental evaluations on widely used datasets, such as BCCD and LUNA16, validate the rationale and efficacy of CAF-YOLO. This methodology excels in detecting and precisely locating diverse and intricate micro-lesions within biomedical imagery. Our codes are available at https://github.com/xiaochen925/CAF-YOLO.
Related papers
- Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network [84.88767228835928]
We introduce Mew, a novel framework designed to efficiently process mIF images through the lens of multiplex network.
Mew innovatively constructs a multiplex network comprising two distinct layers: a Voronoi network for geometric information and a Cell-type network for capturing cell-wise homogeneity.
This framework equips a scalable and efficient Graph Neural Network (GNN), capable of processing the entire graph during training.
arXiv Detail & Related papers (2024-07-25T08:22:30Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - A novel framework employing deep multi-attention channels network for
the autonomous detection of metastasizing cells through fluorescence
microscopy [0.20999222360659603]
We developed a computational framework that can distinguish between normal and metastasizing human cells.
The method relies on fluorescence microscopy images showing the spatial organization of actin and vimentin filaments in normal and metastasizing single cells.
arXiv Detail & Related papers (2023-09-02T11:20:10Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
Medical image super-resolution (SR) reconstruction using deep learning techniques can enhance lesion analysis and assist doctors in improving diagnostic efficiency and accuracy.
Existing deep learning-based SR methods rely on convolutional neural networks (CNNs), which inherently limit the expressive capabilities of these models.
We propose an A-network that utilizes multiple convolution operator feature extraction modules (MCO) for extracting image features.
arXiv Detail & Related papers (2023-05-29T06:14:22Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - DLDNN: Deterministic Lateral Displacement Design Automation by Neural
Networks [1.8365768330479992]
This paper investigates a fast versatile design automation platform to address Deterministic lateral displacement (DLD) problems.
convolutional and artificial neural networks were employed to learn velocity fields and critical diameters of a range of DLD configurations.
The developed tool was tested for 12 critical conditions and performed reliably with errors of less than 4%.
arXiv Detail & Related papers (2022-08-30T14:38:17Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans [0.0]
We present an algorithm for multi-scale tumor (chimeric cell) detection in high resolution slide scans.
Our approach modifies the effective receptive field at different layers in a CNN so that objects with a broad range of varying scales can be detected in a single forward pass.
arXiv Detail & Related papers (2020-10-01T18:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.