Autonomous Vehicle Lateral Control Using Deep Reinforcement Learning with MPC-PID Demonstration
- URL: http://arxiv.org/abs/2506.04040v1
- Date: Wed, 04 Jun 2025 15:05:06 GMT
- Title: Autonomous Vehicle Lateral Control Using Deep Reinforcement Learning with MPC-PID Demonstration
- Authors: Chengdong Wu, Sven Kirchner, Nils Purschke, Alois C. Knoll,
- Abstract summary: The controller is one of the most important modules in the autonomous driving pipeline.<n>In this work, despite the imperfections in the vehicle models due to measurement errors and simplifications, a reinforcement learning based lateral control approach is presented.
- Score: 23.245716549852332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The controller is one of the most important modules in the autonomous driving pipeline, ensuring the vehicle reaches its desired position. In this work, a reinforcement learning based lateral control approach, despite the imperfections in the vehicle models due to measurement errors and simplifications, is presented. Our approach ensures comfortable, efficient, and robust control performance considering the interface between controlling and other modules. The controller consists of the conventional Model Predictive Control (MPC)-PID part as the basis and the demonstrator, and the Deep Reinforcement Learning (DRL) part which leverages the online information from the MPC-PID part. The controller's performance is evaluated in CARLA using the ground truth of the waypoints as inputs. Experimental results demonstrate the effectiveness of the controller when vehicle information is incomplete, and the training of DRL can be stabilized with the demonstration part. These findings highlight the potential to reduce development and integration efforts for autonomous driving pipelines in the future.
Related papers
- First, Learn What You Don't Know: Active Information Gathering for Driving at the Limits of Handling [38.468291768795865]
In unstable systems, online adaptation may not be fast enough to ensure reliable simultaneous learning and control.
We present a Bayesian meta-learning MPC framework to enable rapid online adaptation.
Experiments on a Toyota Supra show that the framework enables reliable control in dynamic drifting maneuvers.
arXiv Detail & Related papers (2024-10-31T18:02:30Z) - A comparison of RL-based and PID controllers for 6-DOF swimming robots:
hybrid underwater object tracking [8.362739554991073]
We present an exploration and assessment of employing a centralized deep Q-network (DQN) controller as a substitute for PID controllers.
Our primary focus centers on illustrating this transition with the specific case of underwater object tracking.
Our experiments, conducted within a Unity-based simulator, validate the effectiveness of a centralized RL agent over separated PID controllers.
arXiv Detail & Related papers (2024-01-29T23:14:15Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
Scaled robotic cars are commonly equipped with a hierarchical control acthiecture that includes tasks dedicated to vehicle state estimation and control.
This paper covers both aspects by proposing (i) a federeted extended Kalman filter (FEKF) and (ii) a novel deep reinforcement learning (DRL) path tracking controller trained via an expert demonstrator.
The experimentally validated model is used for (i) supporting the design of the FEKF and (ii) serving as a digital twin for training the proposed DRL-based path tracking algorithm.
arXiv Detail & Related papers (2024-01-10T14:40:53Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
We present a novel formulation to model the effects of a locked differential on the lateral dynamics of an autonomous open-wheel racecar.
We include a micro-steps discretization approach to accurately linearize the dynamics and produce a prediction suitable for real-time implementation.
arXiv Detail & Related papers (2023-12-22T16:29:55Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLM is a framework that can perform close-loop autonomous driving in realistic simulators.
We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system.
This model can plug-and-play in existing AD systems such as Apollo for close-loop driving.
arXiv Detail & Related papers (2023-12-14T18:59:05Z) - MPC-Inspired Reinforcement Learning for Verifiable Model-Free Control [5.9867297878688195]
We introduce a new class of parameterized controllers, drawing inspiration from Model Predictive Control (MPC)
The controller resembles a Quadratic Programming (QP) solver of a linear MPC problem, with the parameters of the controller being trained via Deep Reinforcement Learning (DRL)
The proposed controller is significantly more computationally efficient compared to MPC and requires fewer parameters to learn than controllers.
arXiv Detail & Related papers (2023-12-08T19:33:22Z) - Real-Time Model-Free Deep Reinforcement Learning for Force Control of a
Series Elastic Actuator [56.11574814802912]
State-of-the art robotic applications utilize series elastic actuators (SEAs) with closed-loop force control to achieve complex tasks such as walking, lifting, and manipulation.
Model-free PID control methods are more prone to instability due to nonlinearities in the SEA.
Deep reinforcement learning has proved to be an effective model-free method for continuous control tasks.
arXiv Detail & Related papers (2023-04-11T00:51:47Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Deep Reinforcement Learning Aided Platoon Control Relying on V2X
Information [78.18186960475974]
The impact of Vehicle-to-Everything (V2X) communications on platoon control performance is investigated.
Our objective is to find the specific set of information that should be shared among the vehicles for the construction of the most appropriate state space.
More meritorious information is given higher priority in transmission, since including it in the state space has a higher probability in offsetting the negative effect of having higher state dimensions.
arXiv Detail & Related papers (2022-03-28T02:11:54Z) - Deep Reinforcement Learning with Shallow Controllers: An Experimental
Application to PID Tuning [3.9146761527401424]
We demonstrate the challenges in implementing a state of the art deep RL algorithm on a real physical system.
At the core of our approach is the use of a PID controller as the trainable RL policy.
arXiv Detail & Related papers (2021-11-13T18:48:28Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
We show that DRL can successfully learn to perform attitude control of a fixed-wing UAV operating directly on the original nonlinear dynamics.
We deploy the learned controller on the UAV in flight tests, demonstrating comparable performance to the state-of-the-art ArduPlane proportional-integral-derivative (PID) attitude controller.
arXiv Detail & Related papers (2021-11-07T19:07:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.