First, Learn What You Don't Know: Active Information Gathering for Driving at the Limits of Handling
- URL: http://arxiv.org/abs/2411.00107v1
- Date: Thu, 31 Oct 2024 18:02:30 GMT
- Title: First, Learn What You Don't Know: Active Information Gathering for Driving at the Limits of Handling
- Authors: Alexander Davydov, Franck Djeumou, Marcus Greiff, Makoto Suminaka, Michael Thompson, John Subosits, Thomas Lew,
- Abstract summary: In unstable systems, online adaptation may not be fast enough to ensure reliable simultaneous learning and control.
We present a Bayesian meta-learning MPC framework to enable rapid online adaptation.
Experiments on a Toyota Supra show that the framework enables reliable control in dynamic drifting maneuvers.
- Score: 38.468291768795865
- License:
- Abstract: Combining data-driven models that adapt online and model predictive control (MPC) has enabled effective control of nonlinear systems. However, when deployed on unstable systems, online adaptation may not be fast enough to ensure reliable simultaneous learning and control. For example, controllers on a vehicle executing highly dynamic maneuvers may push the tires to their friction limits, destabilizing the vehicle and allowing modeling errors to quickly compound and cause a loss of control. In this work, we present a Bayesian meta-learning MPC framework. We propose an expressive vehicle dynamics model that leverages Bayesian last-layer meta-learning to enable rapid online adaptation. The model's uncertainty estimates are used to guide informative data collection and quickly improve the model prior to deployment. Experiments on a Toyota Supra show that (i) the framework enables reliable control in dynamic drifting maneuvers, (ii) online adaptation alone may not suffice for zero-shot control of a vehicle at the edge of stability, and (iii) active data collection helps achieve reliable performance.
Related papers
- Physics Enhanced Residual Policy Learning (PERPL) for safety cruising in mixed traffic platooning under actuator and communication delay [8.172286651098027]
Linear control models have gained extensive application in vehicle control due to their simplicity, ease of use, and support for stability analysis.
Reinforcement learning (RL) models, on the other hand, offer adaptability but suffer from a lack of interpretability and generalization capabilities.
This paper aims to develop a family of RL-based controllers enhanced by physics-informed policies.
arXiv Detail & Related papers (2024-09-23T23:02:34Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - EditFollower: Tunable Car Following Models for Customizable Adaptive Cruise Control Systems [28.263763430300504]
We propose a data-driven car-following model that allows for adjusting driving discourtesy levels.
Our model provides valuable insights for the development of ACC systems that take into account drivers' social preferences.
arXiv Detail & Related papers (2024-06-23T15:04:07Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
We present a novel formulation to model the effects of a locked differential on the lateral dynamics of an autonomous open-wheel racecar.
We include a micro-steps discretization approach to accurately linearize the dynamics and produce a prediction suitable for real-time implementation.
arXiv Detail & Related papers (2023-12-22T16:29:55Z) - Learning Exactly Linearizable Deep Dynamics Models [0.07366405857677226]
We propose a learning method for exactly linearizable dynamical models that can easily apply various control theories to ensure stability, reliability, etc.
The proposed model is employed for the real-time control of an automotive engine, and the results demonstrate good predictive performance and stable control under constraints.
arXiv Detail & Related papers (2023-11-30T05:40:55Z) - DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control [62.24301794794304]
Deep Adaptive Trajectory Tracking (DATT) is a learning-based approach that can precisely track arbitrary, potentially infeasible trajectories in the presence of large disturbances in the real world.
DATT significantly outperforms competitive adaptive nonlinear and model predictive controllers for both feasible smooth and infeasible trajectories in unsteady wind fields.
It can efficiently run online with an inference time less than 3.2 ms, less than 1/4 of the adaptive nonlinear model predictive control baseline.
arXiv Detail & Related papers (2023-10-13T12:22:31Z) - Safe Navigation in Unstructured Environments by Minimizing Uncertainty
in Control and Perception [5.46262127926284]
Uncertainty in control and perception poses challenges for autonomous vehicle navigation in unstructured environments.
This paper introduces a framework that minimizes control and perception uncertainty to ensure safe and reliable navigation.
arXiv Detail & Related papers (2023-06-26T11:24:03Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
We show that DRL can successfully learn to perform attitude control of a fixed-wing UAV operating directly on the original nonlinear dynamics.
We deploy the learned controller on the UAV in flight tests, demonstrating comparable performance to the state-of-the-art ArduPlane proportional-integral-derivative (PID) attitude controller.
arXiv Detail & Related papers (2021-11-07T19:07:46Z) - Model-Based Meta-Reinforcement Learning for Flight with Suspended
Payloads [69.21503033239985]
Transporting suspended payloads is challenging for autonomous aerial vehicles.
We propose a meta-learning approach that "learns how to learn" models of altered dynamics within seconds of post-connection flight data.
arXiv Detail & Related papers (2020-04-23T17:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.