Curse of Slicing: Why Sliced Mutual Information is a Deceptive Measure of Statistical Dependence
- URL: http://arxiv.org/abs/2506.04053v1
- Date: Wed, 04 Jun 2025 15:18:12 GMT
- Title: Curse of Slicing: Why Sliced Mutual Information is a Deceptive Measure of Statistical Dependence
- Authors: Alexander Semenenko, Ivan Butakov, Alexey Frolov, Ivan Oseledets,
- Abstract summary: Sliced Mutual Information (SMI) is widely used as a scalable alternative to mutual information for measuring non-linear statistical dependence.<n>We show that SMI saturates easily, fails to detect increases in statistical dependence, prioritizes redundancy over informative content, and in some cases, performs worse than simpler dependence measures like the correlation coefficient.
- Score: 45.24347017854392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sliced Mutual Information (SMI) is widely used as a scalable alternative to mutual information for measuring non-linear statistical dependence. Despite its advantages, such as faster convergence, robustness to high dimensionality, and nullification only under statistical independence, we demonstrate that SMI is highly susceptible to data manipulation and exhibits counterintuitive behavior. Through extensive benchmarking and theoretical analysis, we show that SMI saturates easily, fails to detect increases in statistical dependence (even under linear transformations designed to enhance the extraction of information), prioritizes redundancy over informative content, and in some cases, performs worse than simpler dependence measures like the correlation coefficient.
Related papers
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
This work demonstrates that the tools and principles driving the success of large language models (LLMs) can be repurposed to tackle distribution-level tasks.<n>We propose meta-statistical learning, a framework inspired by multi-instance learning that reformulates statistical inference tasks as supervised learning problems.
arXiv Detail & Related papers (2025-02-17T18:04:39Z) - Private Regression via Data-Dependent Sufficient Statistic Perturbation [9.58219088613742]
We introduce data-dependent SSP for linear regression based on post-processing privately released marginals.
We extend this result to logistic regression by developing an approximate objective that can be expressed in terms of sufficient statistics.
arXiv Detail & Related papers (2024-05-23T19:09:50Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - On the Performance of Empirical Risk Minimization with Smoothed Data [59.3428024282545]
Empirical Risk Minimization (ERM) is able to achieve sublinear error whenever a class is learnable with iid data.
We show that ERM is able to achieve sublinear error whenever a class is learnable with iid data.
arXiv Detail & Related papers (2024-02-22T21:55:41Z) - Max-Sliced Mutual Information [17.667315953598788]
Quantifying the dependence between high-dimensional random variables is central to statistical learning and inference.
Two classical methods are canonical correlation analysis (CCA), which identifies maximally correlated projected versions of the original variables, and Shannon's mutual information, which is a universal dependence measure.
This work proposes a middle ground in the form of a scalable information-theoretic generalization of CCA, termed max-sliced mutual information (mSMI)
arXiv Detail & Related papers (2023-09-28T06:49:25Z) - Measuring Statistical Dependencies via Maximum Norm and Characteristic
Functions [0.0]
We propose a statistical dependence measure based on the maximum-norm of the difference between joint and product-marginal characteristic functions.
The proposed measure can detect arbitrary statistical dependence between two random vectors of possibly different dimensions.
We conduct experiments both with simulated and real data.
arXiv Detail & Related papers (2022-08-16T20:24:31Z) - Differential privacy and robust statistics in high dimensions [49.50869296871643]
High-dimensional Propose-Test-Release (HPTR) builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism.
We show that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.
arXiv Detail & Related papers (2021-11-12T06:36:40Z) - Causal learning with sufficient statistics: an information bottleneck
approach [3.720546514089338]
Methods extracting causal information from conditional independencies between variables of a system are common.
We capitalize on the fact that the laws governing the generative mechanisms of a system often result in substructures embodied in the generative functional equation of a variable.
We propose to use the Information Bottleneck method, a technique commonly applied for dimensionality reduction, to find underlying sufficient sets of statistics.
arXiv Detail & Related papers (2020-10-12T00:20:01Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.