chemtrain-deploy: A parallel and scalable framework for machine learning potentials in million-atom MD simulations
- URL: http://arxiv.org/abs/2506.04055v1
- Date: Wed, 04 Jun 2025 15:19:26 GMT
- Title: chemtrain-deploy: A parallel and scalable framework for machine learning potentials in million-atom MD simulations
- Authors: Paul Fuchs, Weilong Chen, Stephan Thaler, Julija Zavadlav,
- Abstract summary: We present chemtrain-deploy, a framework that enables model-agnostic deployment of LAMMPS in MD simulations.<n>Chemtrain-deploy supports any JAX-defined semi-local potential, allowing users to exploit the functionality of LAMMPS.<n>It achieves state-of-the-art efficiency and scales to systems containing millions of atoms.
- Score: 0.6240840318920522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning potentials (MLPs) have advanced rapidly and show great promise to transform molecular dynamics (MD) simulations. However, most existing software tools are tied to specific MLP architectures, lack integration with standard MD packages, or are not parallelizable across GPUs. To address these challenges, we present chemtrain-deploy, a framework that enables model-agnostic deployment of MLPs in LAMMPS. chemtrain-deploy supports any JAX-defined semi-local potential, allowing users to exploit the functionality of LAMMPS and perform large-scale MLP-based MD simulations on multiple GPUs. It achieves state-of-the-art efficiency and scales to systems containing millions of atoms. We validate its performance and scalability using graph neural network architectures, including MACE, Allegro, and PaiNN, applied to a variety of systems, such as liquid-vapor interfaces, crystalline materials, and solvated peptides. Our results highlight the practical utility of chemtrain-deploy for real-world, high-performance simulations and provide guidance for MLP architecture selection and future design.
Related papers
- Automating MD simulations for Proteins using Large language Models: NAMD-Agent [9.339909188265333]
We introduce an automated pipeline that leverages Large Language Models (LLMs), specifically Gemini 2.0 Flash, in conjunction with python scripting and Selenium based web automation.<n>The pipeline exploits CHARMM GUI's comprehensive web-based interface for preparing simulation-ready inputs for NAMD.<n>Results demonstrate that this approach reduces setup time, minimizes manual errors, and offers a scalable solution for handling multiple protein systems in parallel.
arXiv Detail & Related papers (2025-07-10T16:17:40Z) - DistMLIP: A Distributed Inference Platform for Machine Learning Interatomic Potentials [6.622327158385407]
Machine learning interatomic potentials (MLIPs) have offered a solution to scale up quantum mechanical calculations.<n>We present DistMLIP, an efficient distributed inference platform for MLIPs based on zero-redundancy, graph-level parallelization.<n>We demonstrate DistMLIP on four widely used and state-of-the-art MLIPs: CHGNet, MACE,Net, and eSEN.
arXiv Detail & Related papers (2025-05-28T23:23:36Z) - Fast, Modular, and Differentiable Framework for Machine Learning-Enhanced Molecular Simulations [12.00988094580341]
We present an end-to-end differentiable molecular simulation framework (DIMOS) for molecular dynamics and Monte Carlo simulations.<n>Thanks to its modularity, both classical and machine-learning-based approaches can be easily combined into a hybrid description of the system (ML/MM)<n>The superior performance and the high versatility is probed in different benchmarks and applications, with speed-up factors of up to $170times$.
arXiv Detail & Related papers (2025-03-26T13:39:10Z) - MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
Current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks.<n>We develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM.<n>MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator.
arXiv Detail & Related papers (2025-01-18T13:54:00Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE that surpasses the existing parallelism schemes.<n>Our results demonstrate at most 52.4% improvement in prefill throughput compared to existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
Large Multimodal Models (LMMs) have ushered in a new era in artificial intelligence, merging capabilities in both language and vision to form highly capable Visual Foundation Agents.
Existing benchmarks fail to sufficiently challenge or showcase the full potential of LMMs in complex, real-world environments.
VisualAgentBench (VAB) is a pioneering benchmark specifically designed to train and evaluate LMMs as visual foundation agents.
arXiv Detail & Related papers (2024-08-12T17:44:17Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - MLatom 3: Platform for machine learning-enhanced computational chemistry
simulations and workflows [12.337972297411003]
Machine learning (ML) is increasingly becoming a common tool in computational chemistry.
MLatom 3 is a program package designed to leverage the power of ML to enhance typical computational chemistry simulations.
The users can choose from an extensive library of methods containing pre-trained ML models and quantum mechanical approximations.
arXiv Detail & Related papers (2023-10-31T03:41:39Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - A Unified Cloud-Enabled Discrete Event Parallel and Distributed
Simulation Architecture [0.7949705607963994]
We present a unified parallel and distributed M&S architecture with enough flexibility to deploy simulations in the Cloud.
Our framework is based on the Discrete Event System Specification (DEVS) formalism.
The performance of the parallel and distributed framework is tested using the xDEVS M&S tool and the DEVStone benchmark with up to eight computing nodes.
arXiv Detail & Related papers (2023-02-22T09:47:09Z) - Achieving 100X faster simulations of complex biological phenomena by
coupling ML to HPC ensembles [47.44377051031385]
We present DeepDriveMD, a tool for a range of prototypical ML-driven HPC simulation scenarios.
We use it to quantify improvements in the scientific performance of ML-driven ensemble-based applications.
arXiv Detail & Related papers (2021-04-10T15:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.