SPICE: A Synergistic, Precise, Iterative, and Customizable Image Editing Workflow
- URL: http://arxiv.org/abs/2504.09697v1
- Date: Sun, 13 Apr 2025 19:13:04 GMT
- Title: SPICE: A Synergistic, Precise, Iterative, and Customizable Image Editing Workflow
- Authors: Kenan Tang, Yanhong Li, Yao Qin,
- Abstract summary: SPICE is a training-free workflow that accepts arbitrary resolutions and aspect ratios, accurately follows user requirements, and improves image quality consistently.<n> SPICE outperforms state-of-the-art baselines on a challenging realistic image-editing dataset.
- Score: 8.850778795270351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent prompt-based image editing models have demonstrated impressive prompt-following capability at structural editing tasks. However, existing models still fail to perform local edits, follow detailed editing prompts, or maintain global image quality beyond a single editing step. To address these challenges, we introduce SPICE, a training-free workflow that accepts arbitrary resolutions and aspect ratios, accurately follows user requirements, and improves image quality consistently during more than 100 editing steps. By synergizing the strengths of a base diffusion model and a Canny edge ControlNet model, SPICE robustly handles free-form editing instructions from the user. SPICE outperforms state-of-the-art baselines on a challenging realistic image-editing dataset consisting of semantic editing (object addition, removal, replacement, and background change), stylistic editing (texture changes), and structural editing (action change) tasks. Not only does SPICE achieve the highest quantitative performance according to standard evaluation metrics, but it is also consistently preferred by users over existing image-editing methods. We release the workflow implementation for popular diffusion model Web UIs to support further research and artistic exploration.
Related papers
- PIXELS: Progressive Image Xemplar-based Editing with Latent Surgery [10.594261300488546]
We introduce a novel framework for progressive exemplar-driven editing with off-the-shelf diffusion models, dubbed PIXELS.<n>PIXELS provides granular control over edits, allowing adjustments at the pixel or region level.<n>We demonstrate that PIXELS delivers high-quality edits efficiently, leading to a notable improvement in quantitative metrics as well as human evaluation.
arXiv Detail & Related papers (2025-01-16T20:26:30Z) - AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea [88.79769371584491]
We present AnyEdit, a comprehensive multi-modal instruction editing dataset.<n>We ensure the diversity and quality of the AnyEdit collection through three aspects: initial data diversity, adaptive editing process, and automated selection of editing results.<n>Experiments on three benchmark datasets show that AnyEdit consistently boosts the performance of diffusion-based editing models.
arXiv Detail & Related papers (2024-11-24T07:02:56Z) - Task-Oriented Diffusion Inversion for High-Fidelity Text-based Editing [60.730661748555214]
We introduce textbfTask-textbfOriented textbfDiffusion textbfInversion (textbfTODInv), a novel framework that inverts and edits real images tailored to specific editing tasks.
ToDInv seamlessly integrates inversion and editing through reciprocal optimization, ensuring both high fidelity and precise editability.
arXiv Detail & Related papers (2024-08-23T22:16:34Z) - Streamlining Image Editing with Layered Diffusion Brushes [8.738398948669609]
Our system renders a single edit on a 512x512 image within 140 ms using a high-end consumer GPU.
Our approach demonstrates efficacy across a range of tasks, including object attribute adjustments, error correction, and sequential prompt-based object placement and manipulation.
arXiv Detail & Related papers (2024-05-01T04:30:03Z) - Customize your NeRF: Adaptive Source Driven 3D Scene Editing via
Local-Global Iterative Training [61.984277261016146]
We propose a CustomNeRF model that unifies a text description or a reference image as the editing prompt.
To tackle the first challenge, we propose a Local-Global Iterative Editing (LGIE) training scheme that alternates between foreground region editing and full-image editing.
For the second challenge, we also design a class-guided regularization that exploits class priors within the generation model to alleviate the inconsistency problem.
arXiv Detail & Related papers (2023-12-04T06:25:06Z) - Optimisation-Based Multi-Modal Semantic Image Editing [58.496064583110694]
We propose an inference-time editing optimisation to accommodate multiple editing instruction types.
By allowing to adjust the influence of each loss function, we build a flexible editing solution that can be adjusted to user preferences.
We evaluate our method using text, pose and scribble edit conditions, and highlight our ability to achieve complex edits.
arXiv Detail & Related papers (2023-11-28T15:31:11Z) - Emu Edit: Precise Image Editing via Recognition and Generation Tasks [62.95717180730946]
We present Emu Edit, a multi-task image editing model which sets state-of-the-art results in instruction-based image editing.
We train it to multi-task across an unprecedented range of tasks, such as region-based editing, free-form editing, and Computer Vision tasks.
We show that Emu Edit can generalize to new tasks, such as image inpainting, super-resolution, and compositions of editing tasks, with just a few labeled examples.
arXiv Detail & Related papers (2023-11-16T18:55:58Z) - LEDITS: Real Image Editing with DDPM Inversion and Semantic Guidance [0.0]
LEDITS is a combined lightweight approach for real-image editing, incorporating the Edit Friendly DDPM inversion technique with Semantic Guidance.
This approach achieves versatile edits, both subtle and extensive as well as alterations in composition and style, while requiring no optimization nor extensions to the architecture.
arXiv Detail & Related papers (2023-07-02T09:11:09Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGAN is a novel method for high quality, high precision semantic image editing.
We show that EditGAN can manipulate images with an unprecedented level of detail and freedom.
We can also easily combine multiple edits and perform plausible edits beyond EditGAN training data.
arXiv Detail & Related papers (2021-11-04T22:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.