A Kernel-Based Approach for Accurate Steady-State Detection in Performance Time Series
- URL: http://arxiv.org/abs/2506.04204v1
- Date: Wed, 04 Jun 2025 17:48:42 GMT
- Title: A Kernel-Based Approach for Accurate Steady-State Detection in Performance Time Series
- Authors: Martin Beseda, Vittorio Cortellessa, Daniele Di Pompeo, Luca Traini, Michele Tucci,
- Abstract summary: The goal is to introduce a method that avoids premature or delayed detection, which can lead to inaccurate or inefficient performance analysis.<n>The proposed approach adapts techniques from the chemical reactors domain, detecting steady states online.<n>Results show that the new approach reduces total error by 14.5% compared to the state-of-the-art method.
- Score: 1.0485739694839669
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper addresses the challenge of accurately detecting the transition from the warmup phase to the steady state in performance metric time series, which is a critical step for effective benchmarking. The goal is to introduce a method that avoids premature or delayed detection, which can lead to inaccurate or inefficient performance analysis. The proposed approach adapts techniques from the chemical reactors domain, detecting steady states online through the combination of kernel-based step detection and statistical methods. By using a window-based approach, it provides detailed information and improves the accuracy of identifying phase transitions, even in noisy or irregular time series. Results show that the new approach reduces total error by 14.5% compared to the state-of-the-art method. It offers more reliable detection of the steady-state onset, delivering greater precision for benchmarking tasks. For users, the new approach enhances the accuracy and stability of performance benchmarking, efficiently handling diverse time series data. Its robustness and adaptability make it a valuable tool for real-world performance evaluation, ensuring consistent and reproducible results.
Related papers
- Leave-One-Out Stable Conformal Prediction [5.573524700758741]
We propose a novel method to speed up full conformal using algorithmic stability without sample splitting.<n>By leveraging leave-one-out stability, our method is much faster in handling a large number of prediction requests.<n>Our method is theoretically justified and demonstrates superior numerical performance on synthetic and real-world data.
arXiv Detail & Related papers (2025-04-16T15:44:24Z) - Bisimulation metric for Model Predictive Control [44.301098448479195]
Bisimulation Metric for Model Predictive Control (BS-MPC) is a novel approach that incorporates bisimulation metric loss in its objective function to directly optimize the encoder.
BS-MPC improves training stability, robustness against input noise, and computational efficiency by reducing training time.
We evaluate BS-MPC on both continuous control and image-based tasks from the DeepMind Control Suite.
arXiv Detail & Related papers (2024-10-06T17:12:10Z) - Acquiring Better Load Estimates by Combining Anomaly and Change Point Detection in Power Grid Time-series Measurements [0.49478969093606673]
Our approach prioritizes interpretability while ensuring robust and generalizable performance on unseen data.
Results indicate the clear wasted potential when filtering is not applied.
Our methodology's interpretability makes it particularly suitable for critical infrastructure planning.
arXiv Detail & Related papers (2024-05-25T10:15:51Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
We propose a novel anomaly detection framework named ImDiffusion.
ImDiffusion combines time series imputation and diffusion models to achieve accurate and robust anomaly detection.
We evaluate the performance of ImDiffusion via extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2023-07-03T04:57:40Z) - Exogenous Data in Forecasting: FARM -- A New Measure for Relevance
Evaluation [62.997667081978825]
We introduce a new approach named FARM - Forward Relevance Aligned Metric.
Our forward method relies on an angular measure that compares changes in subsequent data points to align time-warped series.
As a first validation step, we present the application of our FARM approach to synthetic but representative signals.
arXiv Detail & Related papers (2023-04-21T15:22:33Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
Dealing with distribution shifts is one of the central challenges for modern machine learning.
We propose an online method that can appropriately reuse historical information.
Our density ratio estimation method is proven to perform well by enjoying a dynamic regret bound.
arXiv Detail & Related papers (2023-02-06T04:03:33Z) - TiSAT: Time Series Anomaly Transformer [30.68108039722565]
We show that a rudimentary Random Guess method can outperform state-of-the-art detectors in terms of this popular but faulty evaluation criterion.
In this work, we propose a proper evaluation metric that measures the timeliness and precision of detecting sequential anomalies.
arXiv Detail & Related papers (2022-03-10T05:46:58Z) - Optimal Sequential Detection of Signals with Unknown Appearance and
Disappearance Points in Time [64.26593350748401]
The paper addresses a sequential changepoint detection problem, assuming that the duration of change may be finite and unknown.
We focus on a reliable maximin change detection criterion of maximizing the minimal probability of detection in a given time (or space) window.
The FMA algorithm is applied to detecting faint streaks of satellites in optical images.
arXiv Detail & Related papers (2021-02-02T04:58:57Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
We study high-confidence behavior-agnostic off-policy evaluation in reinforcement learning.
We show in a variety of benchmarks that the confidence interval estimates are tighter and more accurate than existing methods.
arXiv Detail & Related papers (2020-10-22T12:39:11Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
Online algorithms are popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches.
When a constant step-size is used, these algorithms also have the ability to adapt to drifts in problem parameters, such as data or model properties, and track the optimal solution with reasonable accuracy.
We establish a link between steady-state performance derived under stationarity assumptions and the tracking performance of online learners under random walk models.
arXiv Detail & Related papers (2020-04-04T14:16:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.